CEA-Irfu

Sparsity in Astrophysics:
from Wavelets to Compressed Sensing
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What is a good representation for data?

A signal s (n samples) can be represented as sum of weighted elements of a given dictionary
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. Fast calculation of the coefficients

*  Approximation theory uses the sparsity of the coefficients

e  Analyze the signal through the statistical properties of the coefficients _ JL _
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The STARLET Transform
Isotropic Undecimated Wavelet Transform (a trous algorithm)
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h=[1,4,641]/16, g=8-h, h=§=




Sparsity Model 1: we consider a dictionary
which has a fast transform/reconstruction operator:

Local DCT Stationary textures

Locally oscillatory

Piecewise smooth

Wavelet transform Isotropic structures

Curvelet transform Piecewise smooth,
edge

D ={d1,..., 0K}
K

s = Zakqﬁk = Qq
k=1

V4




How to measure sparsity ?
with 0°=0, || allo=) af =#{ax # 0}
k

Formally, the sparsest coefficients are obtained by solving the optimization problem:

(P0) Minimize (X‘ 0 subjectto  § = ¢OC

It has been proposed (7o relax and) to replace the 1, norm by the 1, norm (Chen, 1995):
(P1) Minimize a | subject to S —_— ¢a

It can be seen as a kind of convexification of (PO).

It has been shown (Donoho and Huo, 1999) that for certain dictionary, if there
exists a highly sparse solution to (P0), then it is identical to the solution of (P1).




Morphological Diversity

°J.-L. Starck, M. Elad, and D.L. Donoho, Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and
Electron Physics, 132, 2004. -

*J.-L. Starck, M. Elad, and D.L. Donoho, Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on
Image Proces., 14, 10, pp 1570--1582, 2005.

«J.Bobin et al, Morphological Component Analysis: an adaptive thresholding strategy, IEEE Trans. on Image Processing, Vol 16, No 11, pp 2675--2681, 2007.
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Sparsity Model 2: we consider a signal as a sum of K
components Sk, § = Zle sg €ach of them being sparse in
a given dictionary :

Sk = Prag




Sparsity Model 1: we consider a dictionary ¢ ={¢1,..., 0k}
which has a fast transform/reconstruction operator: K
= Z arpor = Pa
k=1

Local DCT Stationary textures ~ Wavelet transform Curvelet transform
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Sparsity Model 2: Morphological Diversity:

¢=[d...0.] a={a...a,}, s=¢a= E;qbkak

Sparsity Model 3: we adapt/learn the dictionary directly from the data

Model 3 can be also combined with model 2:

G. Peyre, M J. Fadili and J.L. Starck, , "Learning the Morphological Diversity", SIAM Journal of Imaging Science, 3 (3) , pp.646-669, 2016 .




Advantages of model 1 (fixed dictionary) : extremely fast.

Advantages of model 2 (union of fixed dictionaries):
- more flexible to model 1.

- The coupling of local DCT+curvelet is well adapted to a relatively large class of
images.

Advantages of model 3 (dictionary learning):

atoms can be obtained which are well adapted to the data, and which could never be
obtained with a fixed dictionary.

Drawback of model 3 versus model 1,2:

We pay the price of dictionary learning by being less sensitive to detect very faint
features.

Complexity: Computation time, parameters, etc




INVERSE PROBLEMS

Y=HX+N

X — (I)Oé ,and (Y is sparse

min ||a||7  subject to ||Y — Hdall? < e
87

eDenoising
eDeconvolution
eComponent Separation
eInpainting

eBlind Source Separation
eMinimization algorithms
eCompressed Sensing




Denoising using a sparsity model

Y=X4+N

Denoising using a sparsity prior on the solution:

X is sparse in @, i.e. X = ®a where most of « are negligible.

1
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& €argmin= || Y — Qo ||° +t | a b, 0<p<L1.
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p=0

a € argmin% 1Y — ®a ||? +§ | a o
(8%

==> Solution via Iterative Hard Thresholding
a1 = HardThresh,, (& + p@T (Y — ®a)),un =1/ [|®|*.

- Q; if |k |21,
&, = HardThresh: (o, ) = {Oj’k i)thlervj&;fsje_

1st iteration solution:
X = ® HardThresh,(®7Y) = Ag (V)

Exact for & orthonormal.




p=1
¢ =argming | Y —®a|* +t] a |
(8

==> Solution via iterative Soft Thresholding

a1 = Soft Thresh,,; (&) + p®T (Y — da®)), e (0,2/ ||®]°).

&, = SoftThresh, (e 1) = sign(a; x)(| @k | —t)+

1st 1teration solution:
X = ® SoftThresh,(®7Y) = Ag (V)

Exact for ® orthonormal.




Inverse Problems and Iterative Thresholding Minimizing Algorithm

Iterative thresholding with a varying threshold was proposed in (starck et a1, 2004; Elad et a1, 2005) fOT
sparse signal decomposition in order to accelerate the convergence. The idea consists in

using a different threshold )\(n)at each iteration.

ForisT: o) = HTy (o™ + @TAT (Y — A2a(™))

ForHT: (™) — ST,y (a("’) + T AT (Y _ A(I)a(")))

More Refs: Vonesch et al, 2007; Elad et al 2008; Wright et al., 2008; Nesterov, 2008 and Beck-
Teboulle, 2009; Blumensath, 2008; Maleki et Donoho, 2009 ; Dupe et al, 2010; Dupe et al

2011; Geyre et al, 2011, etc.




DECONVOLUTION

- E. Pantin, J.-L. Starck, and F. Murtagh, "Deconvolution and Blind Deconvolution in Astronomy",
in Blind image deconvolution: theory and applications, pp 277--317, 2007.
- J.-L. Starck, F. Murtagh, and M. Bertero, "The Starlet Transform in Astronomical Data Processing:
Application to Source Detection and Image Deconvolution", Springer, Handbook of Mathematical
Methods in Imaging, in press, 2010.




Compressed Sensing

* E. Candeés and T. Tao, “Near Optimal Signal Recovery From Random Projections: Universal

Encoding Strategies? “, |IEEE Trans. on Information Theory, 52, pp 5406-5425, 2006.

* D. Donoho, “Compressed Sensing”, IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006.

* E. Candes, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction

from Highly Incomplete Frequency Information”, IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, Feb. 2006.

A non linear sampling theorem

“Signals with exactly K components different from zero can be recovered
perfectly from ~ K log N incoherent measurements”

Replace samples with few linear projections y — @ T

M x 1
measurements

M x N

N x 1

sparse y — @SL’

signal

nonzero

K < M << N entries

Reconstruction via non linear processing: 11111 | | T | | 1 S. t . y — @SB
T




Soft Compressed Sensing Definition
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Mutual coherence the degree of similarity between the sparsity and
measurement systems.




Radio-Interferometry

(7] P Q
|
Measurement System
CLEAN Algorithm: P — [  Hogbom. 1974
Wavelet Clean @ = Wavelet Transform (Wakker, and Schwarz, 1988; Starck et al 1994)

==> See (McEwen et al, 2011; Wenger et al, 2010; Wiaux et al, 2009; Cornwell et
al, 2009; Suskimo, 2009; Feng et al, 2011).




CS-Radio Astronomy

Feng Li, Tim J. Cornwell and Frank De hooa, ArXiv:1106.1711,A&A, 528, A31,2011.

Australian Square Kilometer Array Pathfinder (ASKAP) radio telescope.

&0

CEA - Irfu




CS-Radio Astronomy

MEM residual

Hogbom CLEAN
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Missing Data

- Period detection in temporal series
COROT: HD170987

Origirﬁal dataf
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- Bad pixels, cosmic rays,
point sources in 2D images, ...




Missing Data
Period detection in temporal series
Y © >

1&

pu— [ |

Observation Mask u
Measurement System

T TTTTETIETT] O

COROT: HD170987




COROT: HD170987 with in-
arXiv:1003.5178 pal N tl N g

Origihal datal

| " """’.‘ﬂ | |

in-painted|data




e a a
E
</Ppainting :
S. Pires, J.-L. Starck, A. Amara, R. Teyssler, A. Refregler and J. Fadill, "FASTLens (FAst STatistics for weak
Lensing) : Fast method for Weak Lensing Statistics and map making”, MNRAS, 395, 3, pp. 1265-1279, 2009.

Original map Masked map Inpainted map




Bobin, J.-L. Starck, and R. Ottensamer, "Compressed Sensing in Astronomy", IEEE
Journal of Selected Topics in Signal Processing, Vol 2, no 5, pp 718--726, 2008.

2D Noiselet
Transform

+

Projections

6 consecutive Coding
shifted images

(On board)

min [|all¢, s.t. ||y — F(OrPa)le, <€

r = P«
Decoding Decoded data

(On the ground)




Transfering Data to the Earth

Observed Herschel Data During the Calibration
Phase, November 2010, without any compression.

A scan (16 x 16 pixels at 40 Hz during 25 min each, we obtained
60000 images.
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Map from Uncompressed Data Official Pipeline Reconstruction: Averaging

28




N. Barbey, M.Sauvage, J.-L. Starck, and R. Ottensamer, "Feasibility and performances of

compressed-sensing and sparse map-making with Herschel/PACS data", Astronomy and
Astrophysics, 527,102 ,2011.




Gamma Ray Instruments (Integral) - Acquisition with coded masks
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SVOM (future French-Chinese Gamma-Ray Burst mission)

saclay
irfu
- ECLAIRs france-chinese satellite ‘'SVOM’ (launch in 2014-2015)

e Gamma-ray detection in energy range 4 - 120 keV
Coded mask imaging (at 460 mm of the detector plane)

Physical mask pattern
(46 x 46 pixels of 11.7 mm)
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ECLAIR could become the first CS-Designed Astronomical Instrument




Pseudo-3D Weak Lensing

6.5 billion

years ago

S bilkon
years ago

3.5 billion
yoars ago

Redshift, z
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3D Weak Lensing

The convergence k, as seen in sources of a given redshift bin, is the linear

transformation of the matter density contrast, §, along the line-of-sight (Simon
et al 2009):

K=Q0+ N| with o)=pr/p—1

; w® ,
o 3HgQM W1 W(Z)(’w)fK(w) —(7) _ / d /fK (w —w ) ( %)
Qir = 502 / dw () . W (w) i w Fre () p(2) o o

We

where Hj is the hubble parameter, {25, is the matter density parameter, c is
the speed of light, a(w) is the scale parameter evaluated at comoving distance
w, and
K12 gin(K'/?w), K >0
fr(w) = < w, K=0,
(—K)~Y2sinh([-K]"?w) K <0

gives the comoving angular diameter distance as a function of the comoving
distance and the curvature, K, of the Universe.
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3D Weak Lensing
Q 5 N

+
i r 11111

M measurements:

number of bins in the source plane

5 IS sparse.

Q spreads out the information in ) along K bins.

MxN (M>N)

N redshift bin for the density contrast

More unkown than measurements
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3D Weak Lensing

Matter in the Universe as a
Natural Compressed Sensing
Operator

A. Leonard, F.-X. Dupe, J.-L. Starck, "A compressed sensing approach to 3D
weak lensing”, Astronomy and Astrophysics, arXiv:1111.6478, A&A, in press.

, 1
min | 6y st 55— Q0 5 <

Recent optimization method, based on proximal theory, such as Chambolle & Pock
(2010) can be used to find the solution.
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3D Weak Lensing

......

G0
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Reconstructions of two clusters along the line of sight,
|Ocated at a redShift 02 and 10 (data binned into Nsp = 20 redshift bins, but aim

to reconstruct onto Nlp = 25 redshift bins).
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Sparsity/CS in Astrophysics

m Sparsity is very efficient for
Inverse problems (denoising, deconvolution, etc).
Inpainting

Component Separation.

m Compressed Sensing
New algorithms to process radio-interferommetric data
New approaches to analyze data.

New instruments design.

m Perspectives
PLANCK component separation.

Euclid
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Conclusions




