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What is a good representation for data?

2

A signal s (n samples) can be represented as sum of weighted elements of a given dictionary  

Ex: Haar wavelet

Sorted index k’

Many small coefficients

Few large
 coefficients

Atoms
coefficients

Dictionary 
(basis, frame)

• Fast calculation of the coefficients 

• Analyze the signal through the statistical properties of the coefficients

• Approximation theory  uses  the sparsity of the coefficients
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The STARLET Transform 
Isotropic Undecimated Wavelet Transform (a trous algorithm)
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h = [1,4,6,4,1]/16,   g =% - h,    ˜ h = ˜ g =%



Local DCT

Wavelet transform

Curvelet transform Piecewise smooth, 
edge

Piecewise smooth

Isotropic structures

Stationary textures

Locally oscillatory

Sparsity Model 1: we consider a dictionary 
 which has a fast transform/reconstruction operator:



Formally, the sparsest coefficients are obtained by solving the optimization problem:  

(P0)   Minimize                         subject to   

It has been proposed (to relax and) to replace the l0 norm by the l1 norm (Chen, 1995):

(P1) Minimize                         subject to   

It can be seen as a kind of convexification of (P0).

It has been shown (Donoho and Huo, 1999) that for certain dictionary, if there
exists a highly sparse solution to (P0), then it is identical to the solution of (P1).
€ 

α 0

€ 

α 1

€ 

s = φα
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s = φα

How to measure sparsity ?



Morphological Diversity
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φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1

L
∑ αk

•J.-L. Starck, M. Elad, and D.L. Donoho, Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and 
Electron Physics, 132, 2004.
•J.-L. Starck, M. Elad, and D.L. Donoho, Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on 
Image Proces.,  14, 10,  pp 1570--1582, 2005.

•J.Bobin et al, Morphological Component Analysis: an adaptive thresholding strategy, IEEE Trans. on Image Processing, Vol 16, No 11, pp 2675--2681, 2007.

Sparsity Model 2:  we consider a signal as a sum of K 
components sk,                    ,  each of them being sparse in 
a given dictionary :



Local DCT Wavelet transform Curvelet transform

Sparsity Model 1: we consider a dictionary 
 which has a fast transform/reconstruction operator:

Piecewise smooth

Isotropic structures

Piecewise smooth, 
edge

Stationary textures

Locally oscillatory

Sparsity Model 2:  Morphological Diversity: 
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φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1

L
∑ αk

Sparsity Model 3:   we adapt/learn the dictionary directly from the data

G. Peyre, M.J. Fadili and J.L. Starck, , "Learning the Morphological Diversity", SIAM Journal of Imaging Science, 3 (3) , pp.646-669, 2010.

Model 3 can be also combined with model 2:



Advantages of model 1 (fixed dictionary) : extremely fast.  

Advantages of model 3 (dictionary learning):  
atoms can be obtained which are well adapted to the data, and which could never be 
obtained with a fixed dictionary.
Drawback of model 3 versus model 1,2:
We pay the price of dictionary learning by being less sensitive to detect very faint 
features.
Complexity: Computation time,  parameters, etc

Advantages of model  2 (union of fixed dictionaries): 
- more flexible to model 1. 
- The coupling of local DCT+curvelet is well adapted to a relatively large class of 
images.



INVERSE PROBLEMS

•Denoising  
•Deconvolution
•Component Separation
•Inpainting
•Blind Source Separation  
•Minimization algorithms 
•Compressed Sensing  

, and       is sparseα

min
α
�α�p

p subject to �Y −HΦα�2 ≤ �



Denoising using a sparsity model

Denoising using a sparsity prior on the solution:

X is sparse in Φ, i.e. X = Φα where most of α are negligible.

α̃ ∈ arg min
α

1
2
� Y − Φα �2 +t � α �p

p, 0 ≤ p ≤ 1.



α̃(t+1)
= HardThreshµt(α̃

(t)
+ µΦ

T
(Y − Φα̃(t)

)), µ = 1/ �Φ�2 .

==>  Solution via  Iterative Hard Thresholding

p=0

α̃ ∈ arg min
α

1
2 � Y − Φα �2 + t2

2 � α �0

1st iteration solution:

X̃ = Φ HardThresht(Φ
T Y ) = ∆Φ,t(Y )

Exact for Φ orthonormal.



==>  Solution via  iterative Soft Thresholding

p=1

α̃(t+1) = SoftThreshµt(α̃(t) + µΦT (Y − Φα̃(t))), µ ∈ (0, 2/ �Φ�2).

1st iteration solution:

X̃ = Φ SoftThresht(ΦT Y ) = ∆Φ,t(Y )

Exact for Φ orthonormal.



Inverse Problems and Iterative Thresholding Minimizing Algorithm

Iterative thresholding with a varying threshold was proposed in (Starck et al, 2004; Elad et al, 2005) for 
sparse signal decomposition  in order to accelerate the convergence. The idea consists in 
using a different threshold          at each iteration.

For IST:

For IHT:

More Refs: Vonesch et al, 2007; Elad et al 2008; Wright et al., 2008; Nesterov, 2008 and Beck-
Teboulle, 2009;  Blumensath, 2008; Maleki et Donoho, 2009 ; Dupe et al, 2010; Dupe et al 
2011; Geyre et al, 2011, etc.
 



DECONVOLUTION
- E. Pantin, J.-L. Starck, and F. Murtagh,  "Deconvolution and Blind Deconvolution in Astronomy", 
in  Blind image deconvolution: theory and applications, pp 277--317, 2007.

- J.-L. Starck, F. Murtagh, and M. Bertero, "The Starlet Transform in Astronomical Data Processing: 
Application to Source Detection and Image Deconvolution", Springer, Handbook of Mathematical 
Methods in Imaging, in press, 2010.



Compressed  Sensing
* E. Candès and T. Tao, “Near Optimal Signal Recovery From Random Projections: Universal 
Encoding Strategies? “,  IEEE Trans. on Information Theory, 52, pp 5406-5425, 2006.
* D. Donoho, “Compressed Sensing”, IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006.
* E. Candès, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction 
from Highly Incomplete Frequency Information”,  IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, Feb. 2006.

“Signals with exactly K components different from zero can be recovered 
perfectly from ~ K log N incoherent measurements”

A non linear sampling theorem

Reconstruction via non linear processing: 



Soft Compressed Sensing Definition

Y = ΘX = ΘΦα

power-law

sorted index

|α|

 Mutual coherence: 

Mutual coherence the degree of similarity between the sparsity and 
measurement systems.

µΘ,Φ = max
i,k

��
�
Θi,Φk,

���

Measurement System

Not 
Random !

Prior: Data Representation System



Radio-Interferometry 

 ==> See  (McEwen  et al, 2011; Wenger  et al, 2010; Wiaux et al, 2009; Cornwell et 
al, 2009; Suskimo, 2009; Feng et al, 2011).

Measurement System

  
FOURIER  

CLEAN Algorithm:   Φ = Id
Φ = Wavelet TransformWavelet Clean (Wakker, and Schwarz, 1988; Starck et al 1994)

(Hogbom, 1974)

{



Australian Square Kilometer Array Pathfinder (ASKAP) radio telescope.
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CS-Radio Astronomy
The Applications of Compressive Sensing to Radio Astronomy: I Deconvolution
Feng Li, Tim J. Cornwell and Frank De hoog,   ArXiv:1106.1711, A&A,  528, A31,2011.
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CS-Radio Astronomy

Hogbom CLEAN MEM residual



Missing Data
- Period detection in temporal series

COROT: HD170987

- Bad pixels, cosmic rays, 
point sources in 2D images, ...  



Period detection in temporal series

COROT: HD170987

Measurement System
Observation Mask

FOURIER

Missing Data

Measurement System



arXiv:1003.5178





Transfering Spatial Data to the Earth
Bobin, J.-L. Starck, and R. Ottensamer, "Compressed Sensing in Astronomy",   IEEE 
Journal of Selected Topics in Signal Processing,  Vol 2, no 5, pp 718--726,  2008.



Transfering Data to the Earth
Observed Herschel Data During the Calibration 
Phase, November 2010, without any compression.

A  scan   ( 16 x 16 pixels at  40 Hz during 25 min each,  we obtained 
60000 images.  
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Official Pipeline Reconstruction: AveragingMap from Uncompressed Data
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Official Pipeline Reconstruction: AveragingCompressed Sensing Reconstruction

N. Barbey, M.Sauvage, J.-L. Starck, and R. Ottensamer, "Feasibility and performances of 
compressed-sensing and sparse map-making with Herschel/PACS data", Astronomy and 
Astrophysics, 527, 102 , 2011.



Gamma Ray Instruments (Integral) - Acquisition with coded masks

INTEGRAL/IBIS Coded Mask

Measurement System

  CODED 
Mask  

Crab Nebula  Integral Observation
Courtesy I. Caballero, J. Rodriguez (AIM/Saclay)



SVOM (future French-Chinese Gamma-Ray Burst mission)

 

Physical mask pattern 
(46 x 46 pixels of 11.7 mm)
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- ECLAIRs  france-chinese satellite ‘SVOM’ (launch in 2014-2015)
  Gamma-ray detection in energy range  4 - 120 keV
  Coded mask imaging (at 460 mm of the detector plane)

ECLAIR could become the first CS-Designed Astronomical Instrument 
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Pseudo-3D Weak Lensing
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3D Weak Lensing

Qi� =
3H2

0ΩM

2c2

� w�+1

w�

dw
W

(i)
(w)fK(w)

a(w)
,

δ(r) ≡ ρ(r)/ρ− 1κ = Qδ +N

where H0 is the hubble parameter, ΩM is the matter density parameter, c is
the speed of light, a(w) is the scale parameter evaluated at comoving distance
w, and

fK(w) =






K
−1/2 sin(K1/2

w), K > 0

w, K = 0

(−K)−1/2sinh([−K]1/2w) K < 0

,

gives the comoving angular diameter distance as a function of the comoving
distance and the curvature, K, of the Universe.

with

W
(i)
(w) =

� w(i)

0
dw� fK(w − w�)

fK(w�)

�
p(z)

dz

dw

�

z=z(w�)

The convergence κ, as seen in sources of a given redshift bin, is the linear
transformation of the matter density contrast, δ, along the line-of-sight (Simon
et al 2009):
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3D Weak Lensing

=

κ δQ

M  measurements:

number of bins in the source plane

M x N  (M > N)

N  redshift bin for the density contrast

+

N

δ is sparse.
Q spreads out the information in    along      bins.
More unkown than measurements

δ κ
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3D Weak Lensing

Matter in the Universe as a 
Natural  Compressed Sensing 

Operator

min
δ

� δ �1 s.t.
1

2
� κ−Qδ �2Σ−1≤ � (1)

Recent optimization method, based on proximal theory,  such as Chambolle & Pock 
(2010) can be used to find the solution. 

 A. Leonard, F.-X. Dupe, J.-L. Starck, "A compressed sensing approach to 3D 
weak lensing", Astronomy and Astrophysics,  arXiv:1111.6478,  A&A, in press.
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3D Weak Lensing

Reconstructions of two clusters along the line of sight, 
located at a redshift  0.2 and 1.0 (data binned into Nsp = 20 redshift bins, but aim 
to reconstruct onto Nlp = 25 redshift bins).



Sparsity/CS in Astrophysics Conclusions

37

Sparsity is very efficient for

Inverse problems (denoising, deconvolution, etc).

Inpainting

Component Separation.

Compressed Sensing

New algorithms to process radio-interferommetric data

New approaches to analyze data.

New instruments design.

Perspectives

PLANCK component separation.

Euclid


