Model-based clustering of functional data

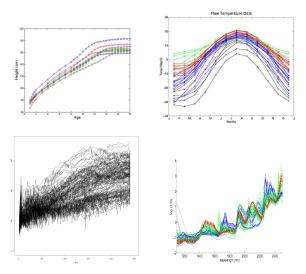
Julien JACQUES

Laboratoire P. Painlevé, UMR CNRS 8524 & Université Lille 1 MODAL, INRIA Lille Nord Europe

December 8th 2011

joint work with Charles BOUVEYRON (Paris 1)

Some functional data:



Julien JACQUES (Lille 1)

Clustering of functional data

・ロト ・ 四ト ・ ヨト ・ ヨト

Clustering

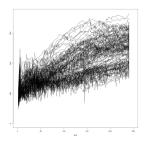
Task of assigning a set of objects into groups (clusters).

Objects in a cluster are more similar to each other than to those in other clusters.

Clustering

Task of assigning a set of objects into groups (clusters).

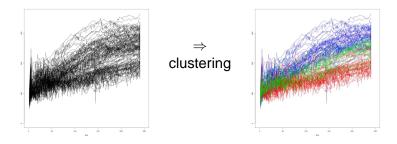
Objects in a cluster are more similar to each other than to those in other clusters.



Clustering

Task of assigning a set of objects into groups (clusters).

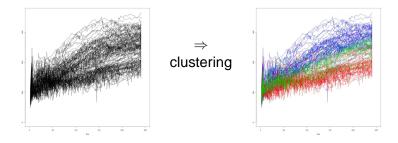
Objects in a cluster are more similar to each other than to those in other clusters.



Clustering

Task of assigning a set of objects into groups (clusters).

Objects in a cluster are more similar to each other than to those in other clusters.



Clustering: unsupervised classification, data segmentation...

Julien JACQUES (Lille 1)

Clustering of functional data

Clustering techniques for functional data

Parametric clustering techniques for curves are generally performed in two steps

- The discretization step aims to describe the functions in a finite dimensional space:
 - direct discretization $(X_{t_1}, \ldots, X_{t_p})$,
 - approximation of curves into a space spanned by a finite basis of functions

$$X(t) = \sum_{j=1}^{J} \alpha_j \Phi_j(t)$$

- use of on functional principal components (FPCA),
- The clustering step usually applies a multivariate clustering technique on the discretized version of the data:
 - k-means,
 - hierarchical clustering,
 - model-based clustering.

Clustering techniques for functional data

Two steps are not satisfactory

- discretization step is done independently on the clustering task,
- how to choose between the discretization techniques and the clustering ones in a unsupervised context ?

Clustering techniques for functional data

Two steps are not satisfactory

- discretization step is done independently on the clustering task,
- how to choose between the discretization techniques and the clustering ones in a unsupervised context ?

Recent clustering techniques are designed for functional data :

- discretization depending on the clustering task
 - James & Sugar [2003]: cluster-dependent spline decomposition,
 - Bouveyron & J. [2011]: parsimonious modeling of cluster-dependent FPCA,
- approximation of the notion of density
 - J. & Preda [preprint]: model-based clustering using approximation of the notion of density for functional random variable.

(日)

Parsimonious modeling of cluster-dependent FPCA

- The model
- Model inference

Numerical applications

- Introductory example: Canada weather
- Mars surface characterization

Preliminary on model-based clustering

- The model
- Model inference

Numerical applications

- Introductory example: Canada weather
- Mars surface characterization

Observed data

$$oldsymbol{X}_1,\ldots,oldsymbol{X}_n$$
 with $orall 1\leq i\leq n,$ $oldsymbol{X}_i=(X_{i1},\ldots,X_{ip})\in\mathbb{R}^p$

Clustering

consists in grouping each X_i into one of the *K* clusters G_1, \ldots, G_K (*K* known).

Let $\mathbf{Z}_i = (Z_{i1}, \dots, Z_{iK})$ indicates the cluster belonging:

- $Z_{ik} = 1$ if X_i belongs to G_k ,
- $Z_{ik} = 0$ otherwise.

The model

Each cluster of data is assumed to arise from a *p*-variate Gaussian distribution

$$oldsymbol{X}_{|oldsymbol{Z}_k=1} \sim \mathcal{N}_p(\mu_k, \Sigma_k)$$

• marginal distribution is a mixture density

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \sum_{k=1}^{K} \pi_k \phi_k(\boldsymbol{x}; \mu_k, \boldsymbol{\Sigma}_k)$$

- π_k are the mixing proportions
- φ_k(·; μ_k, Σ_k) is the density of N_p(μ_k, Σ_k)
- Bayes rule or Maximum A Posteriori rule classifies x into G_k maximizing:

$$t_k(\mathbf{x}) \propto \pi_k \phi_k(\mathbf{x}; \mu_k, \Sigma_k).$$

Estimation: maximum likelihood

 $\theta = (\pi_k, \mu_k, \Sigma_k)_{k=1,...,K}$ is estimated by maximizing the likelihood of $\underline{x} = (x_1, ..., x_n)$

Log-likelihood

$$I(\theta, \underline{\mathbf{x}}) = \sum_{i=1}^{n} \ln \left(\sum_{k=1}^{K} \pi_{k} \phi_{k}(\mathbf{x}_{i}, \mu_{k}, \Sigma_{k}) \right).$$

Julien JACQUES (Lille 1)

Clustering of functional data

Image: A matrix and a matrix

Estimation: maximum likelihood

 $\theta = (\pi_k, \mu_k, \Sigma_k)_{k=1,...,K}$ is estimated by maximizing the likelihood of $\underline{x} = (x_1, ..., x_n)$

Log-likelihood

$$I(\theta, \underline{\mathbf{x}}) = \sum_{i=1}^{n} \ln \left(\sum_{k=1}^{K} \pi_{k} \phi_{k}(\mathbf{x}_{i}, \mu_{k}, \Sigma_{k}) \right).$$

 $\Rightarrow \ln \Sigma$ is hard to maximize.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Gaussian model-based clustering

Estimation: maximum likelihood

 $\theta = (\pi_k, \mu_k, \Sigma_k)_{k=1,...,K}$ is estimated by maximizing the likelihood of $\underline{x} = (x_1, ..., x_n)$

Log-likelihood

$$I(\theta, \underline{\mathbf{x}}) = \sum_{i=1}^{n} \ln \left(\sum_{k=1}^{K} \pi_{k} \phi_{k}(\mathbf{x}_{i}, \mu_{k}, \Sigma_{k}) \right).$$

 $\Rightarrow \ln \Sigma$ is hard to maximize.

The maximisation will be easier if $\underline{z} = (z_1, ..., z_n)$ was known. Assuming \underline{z} is known, we define the completed log-likelihood:

$$I_{c}(\theta, \underline{\mathbf{x}}, \underline{\mathbf{z}}) = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbf{z}_{ik} \ln \left(\pi_{k} \phi_{k}(\mathbf{x}_{i}, \mu_{k}, \Sigma_{k}) \right).$$

The EM algorithm maximizes $I_c(\theta, \underline{x}, \underline{z})$ rather than $I(\theta, \underline{x})$.

The EM algorithm maximizes $I_c(\theta, \underline{x}, \underline{z})$ rather than $I(\theta, \underline{x})$.

But as z is unknown, it is estimated !

The EM algorithm maximizes $I_c(\theta, \underline{x}, \underline{z})$ rather than $I(\theta, \underline{x})$.

But as z is unknown, it is estimated !

Algorithme EM (CEM version)

• Init: randomize <u>Z</u>

(日)

The EM algorithm maximizes $I_c(\theta, \underline{x}, \underline{z})$ rather than $I(\theta, \underline{x})$.

But as z is unknown, it is estimated !

Algorithme EM (CEM version)

- Init: randomize <u>Z</u>
- M step: compute

$$\theta^{(h+1)} = \operatorname*{argmax}_{\theta} I_{c}(\theta, \underline{x}, \underline{z})$$

э

The EM algorithm maximizes $I_c(\theta, \underline{x}, \underline{z})$ rather than $I(\theta, \underline{x})$.

But as z is unknown, it is estimated !

Algorithme EM (CEM version)

- Init: randomize <u>Z</u>
- M step: compute

$$\theta^{(h+1)} = \operatorname*{argmax}_{\theta} I_c(\theta, \underline{x}, \underline{z})$$

• E step: estimate \underline{Z} according to $\theta^{(h+1)}$

$$t_{ik} = \frac{\pi_k^{(h+1)}\phi_k(\mathbf{x};\mu_k^{(h+1)},\Sigma_k^{(h+1)})}{\sum_{k=1}^{K}\pi_k^{(h+1)}\phi_k(\mathbf{x};\mu_k^{(h+1)},\Sigma_k^{(h+1)})} \quad \text{and } \hat{z}_{ik} = 1 \text{ for } k = \underset{\ell}{\operatorname{argmax}} t_{i\ell}$$

э

The EM algorithm maximizes $I_c(\theta, \underline{x}, \underline{z})$ rather than $I(\theta, \underline{x})$.

But as z is unknown, it is estimated !

Algorithme EM (CEM version)

- Init: randomize <u>Z</u>
- M step: compute

$$\theta^{(h+1)} = \operatorname*{argmax}_{\theta} I_c(\theta, \underline{x}, \underline{z})$$

• E step: estimate \underline{Z} according to $\theta^{(h+1)}$

$$t_{ik} = \frac{\pi_k^{(h+1)}\phi_k(\mathbf{x};\mu_k^{(h+1)},\Sigma_k^{(h+1)})}{\sum_{k=1}^{K}\pi_k^{(h+1)}\phi_k(\mathbf{x};\mu_k^{(h+1)},\Sigma_k^{(h+1)})} \quad \text{and } \hat{z}_{ik} = 1 \text{ for } k = \underset{\ell}{\operatorname{argmax}} t_{i\ell}$$

repeat M and E steps until $I(\hat{\theta}, \underline{\mathbf{X}})$ convergence.

The EM algorithm maximizes $I_c(\theta, \underline{x}, \underline{z})$ rather than $I(\theta, \underline{x})$.

But as z is unknown, it is estimated !

Algorithme EM

- Init: randomize <u>Z</u>
- M step: compute

$$\theta^{(h+1)} = \operatorname*{argmax}_{\theta} E_{\theta^{(h)}}[I_c(\theta, \underline{X}, \underline{Z}) | \underline{X} = \underline{X}]$$

where $\theta^{(h)}$ is the estimation of θ at this step of the algo.

• E step: compute $E_{\theta^{(h)}}[\underline{Z}]$ according to $\theta^{(h+1)}$ $\hat{z}_{ik} = t_{ik} = \frac{\pi_k^{(h+1)}\phi_k(\mathbf{x};\mu_k^{(h+1)},\Sigma_k^{(h+1)})}{\sum_{k=1}^{K}\pi_k^{(h+1)}\phi_k(\mathbf{x};\mu_k^{(h+1)},\Sigma_k^{(h+1)})}$. repeat M and E steps until $l(\hat{\theta},\underline{\mathbf{x}})$ convergence.

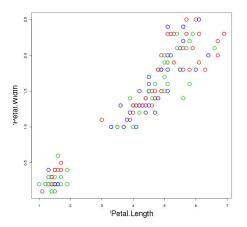
▲白 → ▲圖 → ▲ 国 → ▲ 国 → 二 国 →

We can use a penalized likelihood criterion :

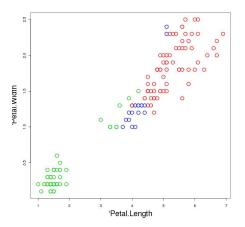
$$BIC = -2I(\hat{ heta}) +
u \ln n$$

where $\boldsymbol{\nu}$ is the number of model parameters.

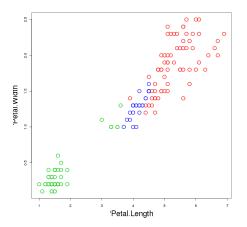
Example of the EM convergence on the famous *iris* dataset.



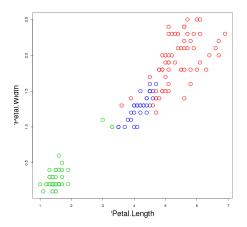
Example of the EM convergence on the famous *iris* dataset.



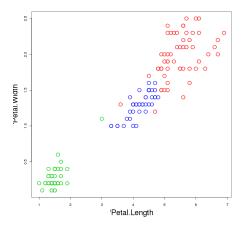
Example of the EM convergence on the famous *iris* dataset.



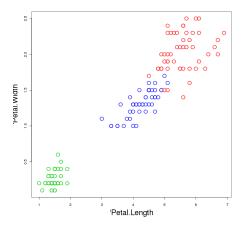
Example of the EM convergence on the famous *iris* dataset.



Example of the EM convergence on the famous *iris* dataset.



Example of the EM convergence on the famous *iris* dataset.



Preliminary on model-based clustering

Parsimonious modeling of cluster-dependent FPCA

- The model
- Model inference

Numerical applications

- Introductory example: Canada weather
- Mars surface characterization

Preliminary on model-based clustering

Parsimonious modeling of cluster-dependent FPCA • The model

Model inference

Numerical applications

- Introductory example: Canada weather
- Mars surface characterization

• Data : $\{x_1, ..., x_n\} \in L_2[0, T]$ indep. realiz. of $X = \{X(t)\}_{t \in [0, T]}$

Image: A matrix

- Data : $\{x_1, ..., x_n\} \in L_2[0, T]$ indep. realiz. of $X = \{X(t)\}_{t \in [0, T]}$
- Observations : for each x_i , only $x_{ij} = x_i(t_{ij})$ are observed for $\{t_{ij} : j = 1, ..., m_i\}$.

- Data : $\{x_1, ..., x_n\} \in L_2[0, T]$ indep. realiz. of $X = \{X(t)\}_{t \in [0, T]}$
- Observations : for each x_i , only $x_{ij} = x_i(t_{ij})$ are observed for $\{t_{ij} : j = 1, ..., m_i\}$.
- Basis expansion : reconstruct the functional form of the data

$$X(t) = \sum_{j=1}^{p} \gamma_j(X) \psi_j(t),$$

 $\gamma = (\gamma_1(X), ..., \gamma_p(X))$ is a random vector in \mathbb{R}^p (*p* known)

- Data : $\{x_1, ..., x_n\} \in L_2[0, T]$ indep. realiz. of $X = \{X(t)\}_{t \in [0, T]}$
- Observations : for each x_i , only $x_{ij} = x_i(t_{ij})$ are observed for $\{t_{ij} : j = 1, ..., m_i\}$.
- Basis expansion : reconstruct the functional form of the data

$$X(t) = \sum_{j=1}^{\rho} \gamma_j(X) \psi_j(t),$$

 $\gamma = (\gamma_1(X), ..., \gamma_p(X))$ is a random vector in \mathbb{R}^p (*p* known) $\Rightarrow x_i$ will be described by $\gamma_i = (\gamma_{i1}, ..., \gamma_{ip})$.

Julien JACQUES (Lille 1)

Clustering of functional data

December 8th 2011 17 / 46

Let $\{x_{i_1}, ..., x_{i_{n_k}}\}$ being n_k curves of \mathcal{G}_k described by $\{\gamma_1, ..., \gamma_{n_k}\} \in \mathbb{R}^p$.

Assumptions

• $\{\gamma_1, ..., \gamma_{n_k}\}$ indep. realiz. of $\Gamma \in \mathbb{R}^p$.

Let $\{x_{i_1}, ..., x_{i_{n_k}}\}$ being n_k curves of \mathcal{G}_k described by $\{\gamma_1, ..., \gamma_{n_k}\} \in \mathbb{R}^p$.

Assumptions

- $\{\gamma_1, ..., \gamma_{n_k}\}$ indep. realiz. of $\Gamma \in \mathbb{R}^p$.
- {x_{i1},...,x_{ink}} are sample paths of a stochastic process which can be described in a sufficient manner in a low-dimensional subspace E_k[0, *T*] of L₂[0, *T*] with dimension d_k ≤ p.

Let $\{x_{i_1}, ..., x_{i_{n_k}}\}$ being n_k curves of \mathcal{G}_k described by $\{\gamma_1, ..., \gamma_{n_k}\} \in \mathbb{R}^p$.

Assumptions

- $\{\gamma_1, ..., \gamma_{n_k}\}$ indep. realiz. of $\Gamma \in \mathbb{R}^p$.
- {x_{i1},...,x_{ink}} are sample paths of a stochastic process which can be described in a sufficient manner in a low-dimensional subspace E_k[0, *T*] of L₂[0, *T*] with dimension d_k ≤ p.
- $\{\varphi_{kj}\}_{j=1,...,d_k}$ a basis of $\mathbb{E}_k[0,T]$,

A THE A THE A

Let $\{x_{i_1}, ..., x_{i_{n_k}}\}$ being n_k curves of \mathcal{G}_k described by $\{\gamma_1, ..., \gamma_{n_k}\} \in \mathbb{R}^p$.

Assumptions

- $\{\gamma_1, ..., \gamma_{n_k}\}$ indep. realiz. of $\Gamma \in \mathbb{R}^p$.
- {x_{i1},...,x_{ink}} are sample paths of a stochastic process which can be described in a sufficient manner in a low-dimensional subspace E_k[0, *T*] of L₂[0, *T*] with dimension d_k ≤ p.
- $\{\varphi_{kj}\}_{j=1,...,d_k}$ a basis of $\mathbb{E}_k[0, T]$,
- { $\lambda_1, ..., \lambda_{n_k}$ } expansion coefficients of curves in { φ_{kj} }_{j=1,...,d_k}.

Let $\{x_{i_1}, ..., x_{i_{n_k}}\}$ being n_k curves of \mathcal{G}_k described by $\{\gamma_1, ..., \gamma_{n_k}\} \in \mathbb{R}^p$.

Assumptions

- $\{\gamma_1, ..., \gamma_{n_k}\}$ indep. realiz. of $\Gamma \in \mathbb{R}^p$.
- {x_{i1},...,x_{ink}} are sample paths of a stochastic process which can be described in a sufficient manner in a low-dimensional subspace E_k[0, *T*] of L₂[0, *T*] with dimension d_k ≤ p.
- $\{\varphi_{kj}\}_{j=1,...,d_k}$ a basis of $\mathbb{E}_k[0, T]$,
- { $\lambda_1, ..., \lambda_{n_k}$ } expansion coefficients of curves in { φ_{kj} }_{j=1,...,d_k}.
- $\{\lambda_1, ..., \lambda_{n_k}\}$ indep. realiz. of $\Lambda \in \mathbb{R}^{d_k}$.

Let $\{x_{i_1}, ..., x_{i_{n_k}}\}$ being n_k curves of \mathcal{G}_k described by $\{\gamma_1, ..., \gamma_{n_k}\} \in \mathbb{R}^p$.

Assumptions

- $\{\gamma_1, ..., \gamma_{n_k}\}$ indep. realiz. of $\Gamma \in \mathbb{R}^p$.
- {x_{i1},...,x_{ink}} are sample paths of a stochastic process which can be described in a sufficient manner in a low-dimensional subspace E_k[0, *T*] of L₂[0, *T*] with dimension d_k ≤ p.
- $\{\varphi_{kj}\}_{j=1,...,d_k}$ a basis of $\mathbb{E}_k[0, T]$,
- { $\lambda_1, ..., \lambda_{n_k}$ } expansion coefficients of curves in { φ_{kj} }_{j=1,...,d_k}.
- $\{\lambda_1, ..., \lambda_{n_k}\}$ indep. realiz. of $\Lambda \in \mathbb{R}^{d_k}$.
- Γ and Λ linked by

$$\Gamma = U_k \Lambda + \varepsilon,$$

where U_k a $p \times d_k$ matrix and $\varepsilon \in \mathbb{R}^p$ an indep. noise term.

Distributional assumptions

- $\Lambda \sim \mathcal{N}(m_k, S_k)$, where $m_k \in \mathbb{R}^{d_k}$ and $S_k = \text{diag}(a_{k1}, ..., a_{kd_k})$.
- $\varepsilon \sim \mathcal{N}(0, \Xi_k)$,

э

(日)

Distributional assumptions

• $\Lambda \sim \mathcal{N}(m_k, S_k)$, where $m_k \in \mathbb{R}^{d_k}$ and $S_k = \text{diag}(a_{k1}, ..., a_{kd_k})$.

•
$$\varepsilon \sim \mathcal{N}(0, \Xi_k),$$

• \Rightarrow $\Gamma \sim \mathcal{N}(\mu_k, \Sigma_k)$, with $\mu_k = U_k m_k$ and $\Sigma_k = U_k S_k U_k^t + \Xi_k$.

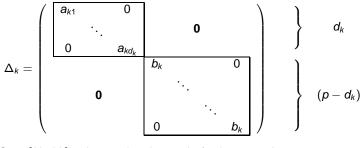
3

Distributional assumptions

• $\Lambda \sim \mathcal{N}(m_k, S_k)$, where $m_k \in \mathbb{R}^{d_k}$ and $S_k = \text{diag}(a_{k1}, ..., a_{kd_k})$. • $\varepsilon \sim \mathcal{N}(0, \Xi_k)$, • $\Rightarrow \Gamma \sim \mathcal{N}(\mu_k, \Sigma_k)$, with $\mu_k = U_k m_k$ and $\Sigma_k = U_k S_k U_k^t + \Xi_k$.

Parsimony assumptions By analogy to HDDC (Bouveyron et al. 2007)

• Ξ_k is assumed to be such that $\Delta_k = Q_k^t \Sigma_k Q_k$ can be written



with $Q_k = [U_k, V_k]$ orthogonal and $a_{kj} > b_k$ for $j = 1, ..., d_k$.

The clustering model FunHDDC

Clustering background

- Let $Z_i = (Z_{i1}, \ldots, Z_{iK})$ indicates the group of the *i*th curve:
 - $Z_{ik} = 1$ if the *i*th curve belongs to \mathcal{G}_k , 0 otherwise.
- Z_i are unobserved.
- Clustering task: predict the value of Z_i for each observed curve x_i .

The clustering model FunHDDC

Clustering background

• Let $Z_i = (Z_{i1}, \ldots, Z_{iK})$ indicates the group of the *i*th curve:

 $Z_{ik} = 1$ if the *i*th curve belongs to G_k , 0 otherwise.

- Z_i are unobserved.
- Clustering task: predict the value of Z_i for each observed curve x_i .

Clustering model

Each curve x_i is assumed to be sample path of X, admitting a basis expansion γ_i whose marginal distribution is:

$$\boldsymbol{p}(\boldsymbol{\gamma}) = \sum_{k=1}^{K} \pi_k \phi(\boldsymbol{\gamma}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

• ϕ is the Gaussian density function,

•
$$\mu_k = U_k m_k$$
,

•
$$\Sigma_k = \mathsf{Q}_k \Delta_k \mathsf{Q}_k^t$$
,

• $\pi_k = P(Z_k = 1)$ is the prior probability of the group \mathcal{G}_k .

This model is quoted FunHDDC_{[$a_{ki}b_k Q_k d_k$].}

→ < Ξ > < Ξ > Ξ

The FunHDDC model and its submodels

Parsimonious submodels can be defined by constraining model parameters within or between groups:

fixing the first *d_k* diagonal elements of Δ_k to be common within each class

 \Rightarrow FunHDDC_[$a_k b_k Q_k d_k$]

• fixing b_k to be common between the classes

 \Rightarrow FunHDDC_[$a_{kj}bQ_kd_k$]

 \Rightarrow FunHDDC_[*a*_k*b*Q_k*d*_k]

which both assume that the behavior of the error components outside the class specific subspaces is common.

Preliminary on model-based clustering

Parsimonious modeling of cluster-dependent FPCA The model

Model inference

Numerical applications

- Introductory example: Canada weather
- Mars surface characterization

FunHDDC: an EM-based algorithm

- unsupervised problem \rightarrow direct maximization of the likelihood unfeasible,
- \Rightarrow EM algorithm:
 - E step:

computes the expectation of the complete log-likelihood conditionally on the current value of the model parameter $\theta^{(q-1)},$

• M step:

estimates the model parameter by maximizing the expectation of the complete likelihood conditionally on the posterior probabilities $t_{ik}^{(q)}$ computed in E step.

The E step in fact reduces to the computation of the posterior probabilities $t_{ik} = P(Z_i = k | X = x_i)$:

$$t_{ik}^{(q)} = 1 / \sum_{\ell=1}^{K} \exp\left(H_k^{(q-1)}(\gamma_i) - H_\ell^{(q-1)}(\gamma_i)\right),$$

with $H_k^{(q-1)}(\gamma)$ defined as:

$$\begin{aligned} H_k^{(q-1)}(\gamma) &= ||\mu_k^{(q-1)} - P_k(\gamma)||_{D_k}^2 + \frac{1}{b_k^{(q-1)}} ||\gamma - P_k(\gamma)||^2 \\ &+ \sum_{j=1}^{d_k} \log(a_{kj}^{(q-1)}) + (p - d_k) \log(b_k^{(q-1)}) - 2\log(\pi_k^{(q-1)}), \end{aligned}$$

where P_k is the projection operator on the latent space \mathbb{E}_k

Julien JACQUES (Lille 1)

The M step consists in updating estimates of model parameters:

- the mixture proportions are estimated by $\pi_k^{(q)} = n_k^{(q)}/n$, with $n_k^{(q)} = \sum_{i=1}^n t_{ik}^{(q)}$,
- the group means are estimated by $\mu_k^{(q)} = \frac{1}{n_k^{(q)}} \sum_{i=1}^n t_{ik}^{(q)} \gamma_i$,

The M step consists in updating estimates of model parameters:

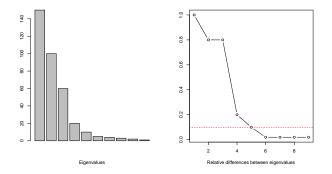
- the mixture proportions are estimated by $\pi_k^{(q)} = n_k^{(q)}/n$, with $n_k^{(q)} = \sum_{i=1}^n t_{ik}^{(q)}$,
- the group means are estimated by $\mu_k^{(q)} = \frac{1}{n_k^{(q)}} \sum_{i=1}^n t_{ik}^{(q)} \gamma_i$,
- the d_k first columns of Q_k are updated by the eigenvectors associated with the largest eigenvalues of $W^{\frac{1}{2}}C_k^{(q)}W^{\frac{1}{2}}$ where $W = (w_{jk})_{1 \le j,k \le p} = \int_0^T \psi_j(t)\psi_k(t)dt$,

The M step consists in updating estimates of model parameters:

- the mixture proportions are estimated by $\pi_k^{(q)} = n_k^{(q)}/n$, with $n_k^{(q)} = \sum_{i=1}^n t_{ik}^{(q)}$,
- the group means are estimated by $\mu_k^{(q)} = \frac{1}{n_k^{(q)}} \sum_{i=1}^n t_{ik}^{(q)} \gamma_i$,
- the d_k first columns of Q_k are updated by the eigenvectors associated with the largest eigenvalues of $W^{\frac{1}{2}}C_k^{(q)}W^{\frac{1}{2}}$ where $W = (w_{jk})_{1 \le j,k \le p} = \int_0^T \psi_j(t)\psi_k(t)dt$,
- the variance parameters a_{kj} , $j = 1, ..., d_k$, are updated by the d_k largest eigenvalues of $W^{\frac{1}{2}}C_k^{(q)}W^{\frac{1}{2}}$,
- the variance parameters b_k are updated by $b_k^{(q)} = \operatorname{trace}(W^{\frac{1}{2}}C_k^{(q)}W^{\frac{1}{2}}) \sum_{j=1}^{d_k} \hat{a}_{kj}^{(q)}.$

Model inference: estimation of hyper-parameters

The intrinsic dimensions d_k are estimated using the scree-test of Cattell which looks for a break in the eigenvalue scree.



The number K of groups is determined using the BIC criterion.

Julien JACQUES (Lille 1)

Clustering of functional data

December 8th 2011 26 / 46

Preliminary on model-based clustering

Parsimonious modeling of cluster-dependent FPCA

- The model
- Model inference

Numerical applications

- Introductory example: Canada weather
- Mars surface characterization

Preliminary on model-based clustering

Parsimonious modeling of cluster-dependent FPCA

- The model
- Model inference

Numerical applications

Introductory example: Canada weather

Mars surface characterization

The Canadian weather dataset:

- it is a classical set of time series presented in details in [Ramsay & Silverman],
- it consists in the daily measured temperatures at 35 Canadian weather stations across the country,
- 35 curves measured at 365 times.

Experimental protocol:

- we ran funHDDC for different numbers of groups and we kept the result with the highest BIC value,
- the most general model $[a_k b_k Q_k d_k]$ was used.

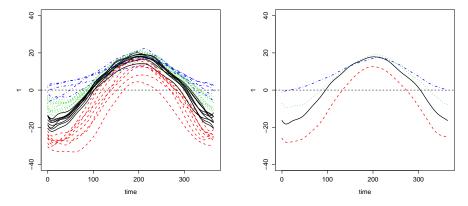


Fig. - Clustering in 4 groups (left) and group means (right).

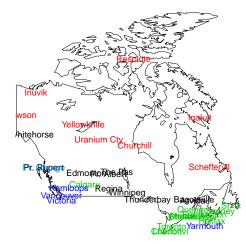
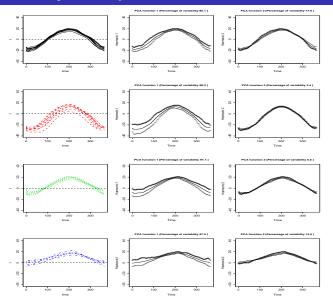


Fig. - Geographical positions of the weather stations with their group labels.

Julien JACQUES (Lille 1)

Clustering of functional data

 ><</th>
 ≥
 <</th>
 ≥
 <</th>
 <</th>



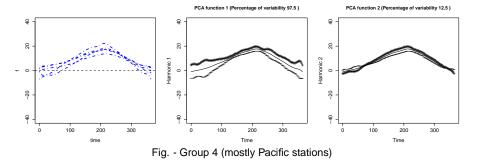
Julien JACQUES (Lille 1)

Clustering of functional data

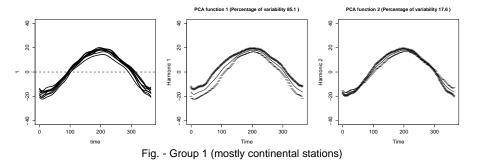
December 8th 2011 32 / 46

æ

∃ ≻.



- PCA function 1: high-variance during winter,
- PCA function 2: time-shift effect.



• PCA function 2: + and – inversion.

< 6 k

- E - N

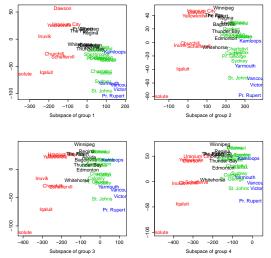


Fig. - Principal scores of the curves into the group-specific functional subspaces.

Julien JACQUES (Lille 1)

December 8th 2011 35 / 46

Preliminary on model-based clustering

Parsimonious modeling of cluster-dependent FPCA

- The model
- Model inference

Mars surface characterization

Mars surface characterization

The data

Hyperspectral images (OMEGA instrument, Mars Express spacecraft)

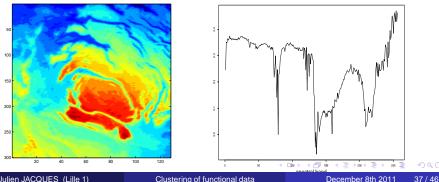
C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes and S. Girard Retrieval of Mars surface

physical properties frim OMEGA hyperspectral images using regularized sliced inverse

regression, Journal of Geophysical Research, 2009, 114, E06005.

Image 300 × 128

For each pixel



Julien JACQUES (Lille 1)

Goal of the study

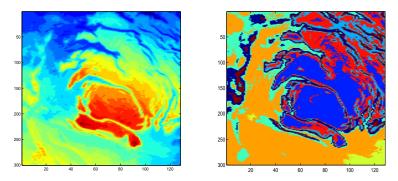
- Characterization of the surface materials,
- \Rightarrow clustering of the 38400 pixels,
- number of groups expected by the experts: 8.

Results with fun-HDDC clustering

- All the submodels lead to relatively similar results,
- BIC tends to select more than 8 groups (about 10-13).

Mars surface characterization

Results obtained with one of the most general model $[a_k b_k Q_k D_k]$



Mars photography and Classification in 8 groups

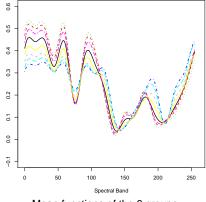
Consistent with the experts classification (in 8 groups): 51.96%

Julien JACQUES (Lille 1)

4 A N

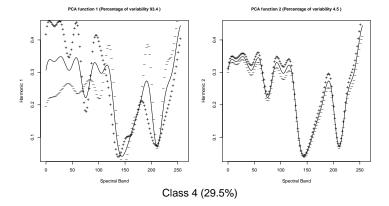
Mars surface characterization

Results obtained with one of the most general model $[a_k b_k Q_k D_k]$



Mean functions of the 8 groups

Results obtained with one of the most general model $[a_k b_k Q_k D_k]$



< A

The funHDDC algorithm:

- is an extension of the multivariate clustering technique HDDC to functional data,
- it is a subspace clustering method which models and clusters the data in a low-dimensional functional subspace,
- it performs similarly or better than 2-step clustering methods while allowing useful interpretations.

Future works:

- extend the technique to multidimensional functions or time series,
- this would be possible by using a Gaussian model with block-diagonal covariance matrices within the group-specific functional subspaces.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Bibliography

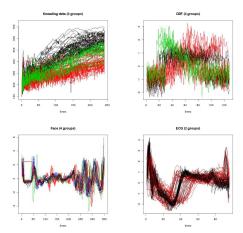
- C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes and S. Girard *Retrieval of Mars surface physical properties frim OMEGA hyperspectral images using regularized sliced inverse regression*, Journal of Geophysical Research, 2009, 114, E06005.
- C. Bouveyron, S. Girard and C. Schmid *High-Dimensional Data Clustering*, Computational Statistics and Data Analysis, 2007, 52[1], 502–519.
- C. Bouveyron and J. Jacques, *Model-based Clustering of Time Series in Group-specific Functional Subspaces*, Advances in Data Analysis and Classification, 2011, 5[4], 281-300.
- - J. Jacques and C. Preda, *Model-based clustering of functional data*, Preprint HAL n°00 628247.
- J.O. Ramsay and B.W. Silverman, *Functional data analysis*, Springer, New York, 2005.
- G.M. James and C.A. Sugar, *Clustering for sparsely sampled functional data*, Journal of the American Statistical Association, 2003, 98[462], 397–408.

(日)

Numerical comparisons on benchmark datasets

We used 4 different time series datasets:

- Kneading: 3 groups, 115 curves,
- CBF: 3 groups, 930 curves,
- Face: 4 groups, 112 curves,
- ECG: 2 groups, 200 curves,



Dataset	Kneading			CBF		
Number of groups	3			3		
Size	50			30		
Method	CCR	BIC	d	CCR	BIC	d
FunHDDC $[a_{ki}b_kQ_kd_k]$	70	-2403	(2,1,1)	63.3	-2430	(1,1,1)
FunHDDC $[a_{kj}bQ_kd_k]$	66.6	-2498	(1,1,1)	63.3	-2498	(1,1,1)
FunHDDC $[a_k b_k Q_k d_k]$	70	-2193	(1,1,1)	56.6	-2514	(1,1,1)
FunHDDC $[a_k b Q_k d_k]$	66.6	-2402	(1,1,1)	63.3	-2402	(1,1,1)
FunHDDC $[ab_k Q_k d_k]$	66.6	-2195	(1,2,1)	56.6	-2523	(1,1,1)
FunHDDC [abQkdk]	66.6	-2397	(1,1,1)	63.3	-2397	(1,1,1)
fclust	60			56.6		
Dataset	Face			ECG		
Number of groups	4			2		
Size		24			100	
Method	CCR	BIC	d	CCR	BIC	d
FunHDDC $[a_{kj}b_kQ_kd_k]$	62.5	-2162	(1,1,2,1)	77	-6667	(1,1)
FunHDDC $[a_{kj}bQ_kd_k]$	50	-2286	1,1,1,1)	76	-6428	(1,1)
FunHDDC $[a_k b_k Q_k d_k]$	62.5	-2078	(2,1,1,1)	77	-6333	(1,1)
FunHDDC $[a_k b Q_k d_k]$	58.3	-2083	(1,2,1,1)	77	-6191	(1,1)
FunHDDC [ab _k Q _k d _k]	66.6	-2092	(2,1,2,1)	77	-6317	(1,1)
FunHDDC [abQkdk]	58.3	-2080	(2,1,1,1)	77	-6167	(1,1)
fclust	41.6			75		

E

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Comparison with two-step methods

	Kneading	1	Kneading						
FunHDDC	functional	2-steps methods	discretized (241 instants)	spline coeff. (20 splines)	FPCA scores (4 components)				
$a_{ki}b_kQ_kd_k$	64.35	HDDC	66.09	53.91	44.35				
$\left[a_{k}bQ_{k}d_{k}\right]$	62.61	MixtPPCA	65.22	64.35	62.61				
$\begin{bmatrix} a_k b_k Q_k d_k \end{bmatrix}$	64.35	mclust	63.48	50.43	60				
$\left[a_k b Q_k d_k\right]^{\dagger}$	62.61	k-means	62.61	62.61	62.61				
$[ab_k Q_k d_k]$	64.35	hclust	63.48	63.48	63.48				
$[abQ_k d_k]$	62.61								
	CBF			CBF					
FunHDDC	functional	2-steps methods	discretized (128 instants)	spline coeff. (20 splines)	FPCA scores (17 components)				
$\left[a_{ki}b_{k}Q_{k}d_{k}\right]$	64.84	HDDC	68.60	51.18	68.17				
$\left[a_{ki}bQ_{k}d_{k}\right]$	70.43	MixtPPCA	65.59	51.29	68.27				
$\begin{bmatrix} a_k b_k Q_k d_k \end{bmatrix}$	64.09	mclust	61.18	62.79	68.06				
$[a_k bQ_k d_k]$	70.65	k-means	64.95	54.09	64.84				
$[ab_k Q_k d_k]$	70.65	hclust	60.86	57.96	66.13				
[abQ _k d _k]	d _k] 70.65								
FunHDDC	Face		Face						
	functional	2-steps	discretized	spline coeff.	FPCA scores				
		methods	(350 instants)	(20 splines)	(3 components)				
$\left[a_{kj}b_k Q_k d_k\right]$	56.25	HDDC	59.82	58.03	63.39				
$[a_{kj}bQ_kd_k]$	54.44	MixtPPCA	54.54	61.36	64.77				
$\left[a_k b_k Q_k d_k\right]$	51.78	mclust	62.5	57.14	55.36				
$[a_k b Q_k d_k]$	54.44	k-means	59.09	53.41	59.09				
$[ab_k Q_k d_k]$	60.71	hclust	50.89	56.25	48.21				
$[abQ_k d_k]$	57.14								
	ECG			ECG					
FunHDDC	functional	2-steps methods	discretized (96 instants)	spline coeff. (20 splines)	FPCA scores (19 components)				
$\left[a_{k_{i}}b_{k}Q_{k}d_{k}\right]$	75	HDDC	74.5	73.5	74.5				
$[a_{ki}bQ_kd_k]$	-	MixtPPCA	74.5	73.5	74.5				
$[a_k b_k Q_k d_k]$	76.5	mclust	81	80.5	81.5				
$\begin{bmatrix} a_k b Q_k d_k \end{bmatrix}$	74.5	k-means	74.5	72.5	74.5				
$\begin{bmatrix} a_k DQ_k d_k \end{bmatrix}$ $\begin{bmatrix} ab_k Q_k d_k \end{bmatrix}$	76.5	hclust	73	76.5	64				

æ