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Introduction

Some functional data:
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Introduction

Clustering
Task of assigning a set of objects into groups (clusters).

Objects in a cluster are more similar to each other than to those in
other clusters.
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Introduction

Clustering
Task of assigning a set of objects into groups (clusters).

Objects in a cluster are more similar to each other than to those in
other clusters.

⇒
clustering

Clustering: unsupervised classification, data segmentation...
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Clustering techniques for functional data

Parametric clustering techniques for curves
are generally performed in two steps

The discretization step aims to describe the functions in a finite
dimensional space:

direct discretization (Xt1 , . . . ,Xtp ),
approximation of curves into a space spanned by a finite basis of
functions

X(t) =

J
∑

j=1

αjΦj(t)

use of on functional principal components (FPCA),

The clustering step usually applies a multivariate clustering technique on
the discretized version of the data:

k-means,
hierarchical clustering,
model-based clustering.
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Clustering techniques for functional data

Two steps are not satisfactory

discretization step is done independently on the clustering task,

how to choose between the discretization techniques and the
clustering ones in a unsupervised context ?
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Clustering techniques for functional data

Two steps are not satisfactory

discretization step is done independently on the clustering task,

how to choose between the discretization techniques and the
clustering ones in a unsupervised context ?

Recent clustering techniques are designed for functional data :
discretization depending on the clustering task

James & Sugar [2003]: cluster-dependent spline decomposition,
Bouveyron & J. [2011]: parsimonious modeling of
cluster-dependent FPCA,

approximation of the notion of density
J. & Preda [preprint]: model-based clustering using approximation
of the notion of density for functional random variable.
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Plan

1 Preliminary on model-based clustering

2 Parsimonious modeling of cluster-dependent FPCA
The model
Model inference

3 Numerical applications
Introductory example: Canada weather
Mars surface characterization

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 6 / 46



Plan

1 Preliminary on model-based clustering

2 Parsimonious modeling of cluster-dependent FPCA
The model
Model inference

3 Numerical applications
Introductory example: Canada weather
Mars surface characterization

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 7 / 46



Gaussian model-based clustering

Observed data
X 1, . . . ,X n with ∀1 ≤ i ≤ n, X i = (Xi1, . . . ,Xip) ∈ R

p

Clustering
consists in grouping each X i into one of the K clusters G1, . . . ,GK

(K known).

Let Z i = (Zi1, . . . ,ZiK ) indicates the cluster belonging:

Zik = 1 if X i belongs to Gk ,

Zik = 0 otherwise.
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Gaussian model-based clustering

The model
Each cluster of data is assumed to arise from a p-variate Gaussian
distribution

X |Z k=1 ∼ Np(µk ,Σk )

marginal distribution is a mixture density

fX (x) =

K
∑

k=1

πkφk (x ;µk ,Σk )

πk are the mixing proportions
φk (·;µk ,Σk ) is the density of Np(µk ,Σk )

Bayes rule or Maximum A Posteriori rule classifies x into Gk

maximizing:
tk (x) ∝ πkφk (x ;µk ,Σk ).
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Gaussian model-based clustering

Estimation: maximum likelihood
θ = (πk , µk ,Σk )k=1,...,K is estimated by maximizing the likelihood of
x = (x1, . . . ,xn)

Log-likelihood

l(θ,x) =
n
∑

i=1

ln

(

K
∑

k=1

πkφk (xi , µk ,Σk )

)

.
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x = (x1, . . . ,xn)

Log-likelihood

l(θ,x) =
n
∑

i=1

ln

(

K
∑

k=1

πkφk (xi , µk ,Σk )

)

.

⇒ ln
∑

is hard to maximize.

The maximisation will be easier if z = (z1, . . . , zn) was known.
Assuming z is known, we define the completed log-likelihood:

lc(θ,x , z) =

n
∑

i=1

K
∑

k=1

zik ln (πkφk (xi , µk ,Σk )) .
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Estimation - EM algorithm

The EM algorithm maximizes lc(θ,x , z) rather than l(θ,x).
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But as z is unknown, it is estimated !

Algorithme EM (CEM version)

Init: randomize z
M step: compute

θ
(h+1) = argmax

θ

lc(θ, x , z)

E step: estimate z according to θ(h+1)

tik =
π

(h+1)
k φk (x ; µ

(h+1)
k , Σ

(h+1)
k )

PK
k=1 π

(h+1)
k φk(x ; µ

(h+1)
k , Σ

(h+1)
k )
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repeat M and E steps until l(θ̂,x) convergence.
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Estimation - EM algorithm

The EM algorithm maximizes lc(θ,x , z) rather than l(θ,x).

But as z is unknown, it is estimated !

Algorithme EM
Init: randomize z
M step: compute

θ
(h+1) = argmax

θ

E
θ(h) [lc(θ, X , Z )|X = x ]

where θ(h) is the estimation of θ at this step of the algo.

E step: compute Eθ(h)[z] according to θ(h+1)

ẑik = tik =
π

(h+1)
k φk(x ; µ

(h+1)
k , Σ

(h+1)
k )

PK
k=1 π

(h+1)
k φk (x ; µ

(h+1)
k , Σ

(h+1)
k )

.

repeat M and E steps until l(θ̂,x) convergence.
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Estimation - selection of the number K of clusters

We can use a penalized likelihood criterion :

BIC = −2l(θ̂) + ν ln n

where ν is the number of model parameters.
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Estimation - illustration

Example of the EM convergence on the famous iris dataset.
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Transformation of the observed curves

Data : {x1, ..., xn} ∈ L2[0,T ] indep. realiz. of X = {X (t)}t∈[0,T ]
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Data : {x1, ..., xn} ∈ L2[0,T ] indep. realiz. of X = {X (t)}t∈[0,T ]

Observations : for each xi , only xij = xi(tij) are observed for
{tij : j = 1, . . . ,mi}.

Basis expansion : reconstruct the functional form of the data

X (t) =

p
∑

j=1

γj(X )ψj (t),

γ = (γ1(X ), ..., γp(X )) is a random vector in R
p (p known)

⇒ xi will be described by γi = (γi1, ..., γip).
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A group-specific functional latent model

Let {xi1 , ..., xink
} being nk curves of Gk described by {γ1, ..., γnk } ∈ R

p.

Assumptions

{γ1, ..., γnk } indep. realiz. of Γ ∈ R
p.

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 18 / 46



A group-specific functional latent model

Let {xi1 , ..., xink
} being nk curves of Gk described by {γ1, ..., γnk } ∈ R

p.

Assumptions

{γ1, ..., γnk } indep. realiz. of Γ ∈ R
p.

{xi1 , ..., xink
} are sample paths of a stochastic process which can

be described in a sufficient manner in a low-dimensional
subspace Ek [0,T ] of L2[0,T ] with dimension dk ≤ p.

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 18 / 46



A group-specific functional latent model

Let {xi1 , ..., xink
} being nk curves of Gk described by {γ1, ..., γnk } ∈ R

p.

Assumptions

{γ1, ..., γnk } indep. realiz. of Γ ∈ R
p.

{xi1 , ..., xink
} are sample paths of a stochastic process which can

be described in a sufficient manner in a low-dimensional
subspace Ek [0,T ] of L2[0,T ] with dimension dk ≤ p.

{ϕkj}j=1,...,dk
a basis of Ek [0,T ],

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 18 / 46



A group-specific functional latent model

Let {xi1 , ..., xink
} being nk curves of Gk described by {γ1, ..., γnk } ∈ R

p.

Assumptions

{γ1, ..., γnk } indep. realiz. of Γ ∈ R
p.

{xi1 , ..., xink
} are sample paths of a stochastic process which can

be described in a sufficient manner in a low-dimensional
subspace Ek [0,T ] of L2[0,T ] with dimension dk ≤ p.

{ϕkj}j=1,...,dk
a basis of Ek [0,T ],

{λ1, ..., λnk } expansion coefficients of curves in {ϕkj}j=1,...,dk
.

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 18 / 46



A group-specific functional latent model

Let {xi1 , ..., xink
} being nk curves of Gk described by {γ1, ..., γnk } ∈ R

p.

Assumptions

{γ1, ..., γnk } indep. realiz. of Γ ∈ R
p.

{xi1 , ..., xink
} are sample paths of a stochastic process which can

be described in a sufficient manner in a low-dimensional
subspace Ek [0,T ] of L2[0,T ] with dimension dk ≤ p.

{ϕkj}j=1,...,dk
a basis of Ek [0,T ],

{λ1, ..., λnk } expansion coefficients of curves in {ϕkj}j=1,...,dk
.

{λ1, ..., λnk } indep. realiz. of Λ ∈ R
dk .

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 18 / 46



A group-specific functional latent model

Let {xi1 , ..., xink
} being nk curves of Gk described by {γ1, ..., γnk } ∈ R

p.

Assumptions

{γ1, ..., γnk } indep. realiz. of Γ ∈ R
p.

{xi1 , ..., xink
} are sample paths of a stochastic process which can

be described in a sufficient manner in a low-dimensional
subspace Ek [0,T ] of L2[0,T ] with dimension dk ≤ p.

{ϕkj}j=1,...,dk
a basis of Ek [0,T ],

{λ1, ..., λnk } expansion coefficients of curves in {ϕkj}j=1,...,dk
.

{λ1, ..., λnk } indep. realiz. of Λ ∈ R
dk .

Γ and Λ linked by
Γ = UkΛ + ε,

where Uk a p × dk matrix and ε ∈ R
p an indep. noise term.
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A group-specific functional latent model

Distributional assumptions
Λ ∼ N (mk , Sk ), where mk ∈ R

dk and Sk = diag(ak1, ..., akdk ).

ε ∼ N (0,Ξk ),
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A group-specific functional latent model

Distributional assumptions
Λ ∼ N (mk , Sk ), where mk ∈ R

dk and Sk = diag(ak1, ..., akdk ).

ε ∼ N (0,Ξk ),

⇒ Γ ∼ N (µk , Σk ) , with µk = Uk mk and Σk = Uk Sk U t
k + Ξk .

Parsimony assumptions By analogy to HDDC (Bouveyron et al. 2007)
Ξk is assumed to be such that ∆k = Qt

kΣk Qk can be written

∆k =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

ak1 0
. . .

0 akdk

0

0

bk 0
. . .

. . .
0 bk

1

C

C

C

C

C

C

C

C

C

C

C

C

A

9

=

;

dk

9

>

>

>

>

=

>

>

>

>

;

(p − dk )

with Qk = [Uk , Vk ] orthogonal and akj > bk for j = 1, ..., dk .
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The clustering model FunHDDC

Clustering background
Let Zi = (Zi1, . . . ,ZiK ) indicates the group of the i th curve:
Zik = 1 if the i th curve belongs to Gk , 0 otherwise.

Zi are unobserved.
Clustering task: predict the value of Zi for each observed curve xi .
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The clustering model FunHDDC

Clustering background
Let Zi = (Zi1, . . . ,ZiK ) indicates the group of the i th curve:
Zik = 1 if the i th curve belongs to Gk , 0 otherwise.

Zi are unobserved.
Clustering task: predict the value of Zi for each observed curve xi .

Clustering model
Each curve xi is assumed to be sample path of X , admitting a
basis expansion γi whose marginal distribution is:

p(γ) =
K
∑

k=1

πkφ(γ;µk ,Σk ),

φ is the Gaussian density function,
µk = Uk mk ,
Σk = Qk∆k Qt

k ,
πk = P(Zk = 1) is the prior probability of the group Gk .

This model is quoted FunHDDC[akjbk Qk dk ].
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The FunHDDC model and its submodels

Parsimonious submodels can be defined by constraining model
parameters within or between groups:

fixing the first dk diagonal elements of ∆k to be common within
each class

⇒ FunHDDC[ak bk Qk dk ]

fixing bk to be common between the classes

⇒ FunHDDC[akjbQk dk ]

⇒ FunHDDC[ak bQk dk ]

which both assume that the behavior of the error components
outside the class specific subspaces is common.
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Model inference: the funHDDC algorithm

FunHDDC: an EM-based algorithm

unsupervised problem → direct maximization of the likelihood
unfeasible,

⇒ EM algorithm:
E step:
computes the expectation of the complete log-likelihood
conditionally on the current value of the model parameter θ(q−1),
M step:
estimates the model parameter by maximizing the expectation of
the complete likelihood conditionally on the posterior probabilities
t(q)
ik computed in E step.
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Model inference: the funHDDC algorithm

The E step in fact reduces to the computation of the posterior
probabilities tik = P(Zi = k |X = xi):

t(q)
ik = 1/

K
∑

ℓ=1

exp
(

H(q−1)
k (γi) − H(q−1)

ℓ (γi)
)

,

with H(q−1)
k (γ) defined as:

H(q−1)
k (γ) = ||µ

(q−1)
k − Pk (γ)||2Dk

+
1

b(q−1)
k

||γ − Pk (γ)||2

+

dk
∑

j=1

log(a(q−1)
kj ) + (p − dk ) log(b(q−1)

k ) − 2 log(π
(q−1)
k ),

where Pk is the projection operator on the latent space Ek
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Model inference: the funHDDC algorithm

The M step consists in updating estimates of model parameters:

the mixture proportions are estimated by π(q)
k = n(q)

k /n, with

n(q)
k =

∑n
i=1 t(q)

ik ,

the group means are estimated by µ(q)
k = 1

n(q)
k

∑n
i=1 t(q)

ik γi ,
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the mixture proportions are estimated by π(q)
k = n(q)

k /n, with

n(q)
k =

∑n
i=1 t(q)

ik ,

the group means are estimated by µ(q)
k = 1

n(q)
k

∑n
i=1 t(q)

ik γi ,

the dk first columns of Qk are updated by the eigenvectors
associated with the largest eigenvalues of W

1
2 C(q)

k W
1
2 where

W = (wjk )1≤j ,k≤p =
∫ T

0 ψj(t)ψk (t)dt ,
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Model inference: the funHDDC algorithm

The M step consists in updating estimates of model parameters:

the mixture proportions are estimated by π(q)
k = n(q)

k /n, with

n(q)
k =

∑n
i=1 t(q)

ik ,

the group means are estimated by µ(q)
k = 1

n(q)
k

∑n
i=1 t(q)

ik γi ,

the dk first columns of Qk are updated by the eigenvectors
associated with the largest eigenvalues of W

1
2 C(q)

k W
1
2 where

W = (wjk )1≤j ,k≤p =
∫ T

0 ψj(t)ψk (t)dt ,

the variance parameters akj , j = 1, ...,dk , are updated by the dk

largest eigenvalues of W
1
2 C(q)

k W
1
2 ,

the variance parameters bk are updated by
b(q)

k = trace(W
1
2 C(q)

k W
1
2 ) −

∑dk
j=1 â(q)

kj .
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Model inference: estimation of hyper-parameters

The intrinsic dimensions dk are estimated using the scree-test of
Cattell which looks for a break in the eigenvalue scree.

Eigenvalues

0
20

40
60

80
10

0
12

0
14

0

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative differences between eigenvalues

The number K of groups is determined using the BIC criterion.

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 26 / 46



Plan

1 Preliminary on model-based clustering

2 Parsimonious modeling of cluster-dependent FPCA
The model
Model inference

3 Numerical applications
Introductory example: Canada weather
Mars surface characterization

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 27 / 46



Plan

1 Preliminary on model-based clustering

2 Parsimonious modeling of cluster-dependent FPCA
The model
Model inference

3 Numerical applications
Introductory example: Canada weather
Mars surface characterization

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 28 / 46



An introductory example: Canada weather

The Canadian weather dataset:

it is a classical set of time series presented in details in [Ramsay &
Silverman],

it consists in the daily measured temperatures at 35 Canadian
weather stations across the country,

35 curves measured at 365 times.

Experimental protocol:

we ran funHDDC for different numbers of groups and we kept the
result with the highest BIC value,

the most general model [akbkQkdk ] was used.
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An introductory example: Canada weather
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Fig. - Clustering in 4 groups (left) and group means (right).
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An introductory example: Canada weather
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Fig. - Geographical positions of the weather stations with their group labels.
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An introductory example: Canada weather
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An introductory example: Canada weather
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Fig. - Group 4 (mostly Pacific stations)

PCA function 1: high-variance during winter,

PCA function 2: time-shift effect.
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An introductory example: Canada weather
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Fig. - Group 1 (mostly continental stations)

PCA function 2: + and − inversion.
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An introductory example: Canada weather
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Fig. - Principal scores of the curves into the group-specific functional subspaces.
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Mars surface characterization

The data
Hyperspectral images (OMEGA instrument, Mars Express spacecraft)
C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes and S. Girard Retrieval of Mars surface

physical properties frim OMEGA hyperspectral images using regularized sliced inverse

regression, Journal of Geophysical Research, 2009, 114, E06005.
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Mars surface characterization

Goal of the study
Characterization of the surface materials,

⇒ clustering of the 38400 pixels,

number of groups expected by the experts: 8.

Results with fun-HDDC clustering
All the submodels lead to relatively similar results,

BIC tends to select more than 8 groups (about 10-13).
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Mars surface characterization

Results obtained with one of the most general model [akbkQkDk ]
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Consistent with the experts classification (in 8 groups): 51.96%
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Mars surface characterization

Results obtained with one of the most general model [akbkQkDk ]

0 50 100 150 200 250

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

Spectral Band

Mean functions of the 8 groups

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 40 / 46



Mars surface characterization

Results obtained with one of the most general model [akbkQkDk ]
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Conclusion

The funHDDC algorithm:

is an extension of the multivariate clustering technique HDDC to
functional data,

it is a subspace clustering method which models and clusters the
data in a low-dimensional functional subspace,

it performs similarly or better than 2-step clustering methods while
allowing useful interpretations.

Future works:

extend the technique to multidimensional functions or time series,

this would be possible by using a Gaussian model with
block-diagonal covariance matrices within the group-specific
functional subspaces.
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Numerical comparisons on benchmark datasets

We used 4 different time series
datasets:

Kneading: 3 groups,
115 curves,

CBF: 3 groups, 930 curves,

Face: 4 groups, 112 curves,

ECG: 2 groups, 200 curves,
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Comparison with fclust (James & Sugar, JASA, 2003)

Dataset Kneading CBF
Number of groups 3 3
Size 50 30
Method CCR BIC d CCR BIC d
FunHDDC [akj bk Qk dk ] 70 -2403 (2,1,1) 63.3 -2430 (1,1,1)
FunHDDC [akj bQk dk ] 66.6 -2498 (1,1,1) 63.3 -2498 (1,1,1)
FunHDDC [ak bk Qk dk ] 70 -2193 (1,1,1) 56.6 -2514 (1,1,1)
FunHDDC [ak bQk dk ] 66.6 -2402 (1,1,1) 63.3 -2402 (1,1,1)
FunHDDC [abk Qk dk ] 66.6 -2195 (1,2,1) 56.6 -2523 (1,1,1)
FunHDDC [abQk dk ] 66.6 -2397 (1,1,1) 63.3 -2397 (1,1,1)
fclust 60 56.6

Dataset Face ECG
Number of groups 4 2
Size 24 100
Method CCR BIC d CCR BIC d
FunHDDC [akj bk Qk dk ] 62.5 -2162 (1,1,2,1) 77 -6667 (1,1)
FunHDDC [akj bQk dk ] 50 -2286 1,1,1,1) 76 -6428 (1,1)
FunHDDC [ak bk Qk dk ] 62.5 -2078 (2,1,1,1) 77 -6333 (1,1)
FunHDDC [ak bQk dk ] 58.3 -2083 (1,2,1,1) 77 -6191 (1,1)
FunHDDC [abk Qk dk ] 66.6 -2092 (2,1,2,1) 77 -6317 (1,1)
FunHDDC [abQk dk ] 58.3 -2080 (2,1,1,1) 77 -6167 (1,1)
fclust 41.6 75
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Comparison with two-step methods

FunHDDC
Kneading Kneading

functional
2-steps discretized spline coeff. FPCA scores
methods (241 instants) (20 splines) (4 components)

[akj bk Qk dk ] 64.35 HDDC 66.09 53.91 44.35
[akj bQk dk ] 62.61 MixtPPCA 65.22 64.35 62.61
[ak bk Qk dk ] 64.35 mclust 63.48 50.43 60
[ak bQk dk ] 62.61 k-means 62.61 62.61 62.61
[abk Qk dk ] 64.35 hclust 63.48 63.48 63.48
[abQk dk ] 62.61

FunHDDC
CBF CBF

functional
2-steps discretized spline coeff. FPCA scores
methods (128 instants) (20 splines) (17 components)

[akj bk Qk dk ] 64.84 HDDC 68.60 51.18 68.17
[akj bQk dk ] 70.43 MixtPPCA 65.59 51.29 68.27
[ak bk Qk dk ] 64.09 mclust 61.18 62.79 68.06
[ak bQk dk ] 70.65 k-means 64.95 54.09 64.84
[abk Qk dk ] 70.65 hclust 60.86 57.96 66.13
[abQk dk ] 70.65

FunHDDC
Face Face

functional
2-steps discretized spline coeff. FPCA scores
methods (350 instants) (20 splines) (3 components)

[akj bk Qk dk ] 56.25 HDDC 59.82 58.03 63.39
[akj bQk dk ] 54.44 MixtPPCA 54.54 61.36 64.77
[ak bk Qk dk ] 51.78 mclust 62.5 57.14 55.36
[ak bQk dk ] 54.44 k-means 59.09 53.41 59.09
[abk Qk dk ] 60.71 hclust 50.89 56.25 48.21
[abQk dk ] 57.14

FunHDDC
ECG ECG

functional
2-steps discretized spline coeff. FPCA scores
methods (96 instants) (20 splines) (19 components)

[akj bk Qk dk ] 75 HDDC 74.5 73.5 74.5
[akj bQk dk ] - MixtPPCA 74.5 73.5 74.5
[ak bk Qk dk ] 76.5 mclust 81 80.5 81.5
[ak bQk dk ] 74.5 k-means 74.5 72.5 74.5
[abk Qk dk ] 76.5 hclust 73 76.5 64
[abQk dk ] 75
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