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Introduction

Some functional data:
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Introduction
Task of assigning a set of objects into groups (clusters).

Objects in a cluster are more similar to each other than to those in
other clusters.
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Introduction

Task of assigning a set of objects into groups (clusters).

Objects in a cluster are more similar to each other than to those in
other clusters.

=
clustering

Clustering: unsupervised classification, data segmentation...
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Clustering techniques for functional data

Parametric clustering techniques for curves
are generally performed in two steps

@ The discretization step aims to describe the functions in a finite
dimensional space:

o direct discretization (Xy,, ..., Xy,),
@ approximation of curves into a space spanned by a finite basis of
functions

X(8) = 3 asy()
j=1

@ use of on functional principal components (FPCA),

@ The clustering step usually applies a multivariate clustering technique on
the discretized version of the data:

@ k-means,
@ hierarchical clustering,
@ model-based clustering.

v
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Clustering techniques for functional data

Two steps are not satisfactory
@ discretization step is done independently on the clustering task,

@ how to choose between the discretization techniques and the
clustering ones in a unsupervised context ?
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Clustering techniques for functional data

Two steps are not satisfactory
@ discretization step is done independently on the clustering task,

@ how to choose between the discretization techniques and the
clustering ones in a unsupervised context ?

Recent clustering technigues are designed for functional data :
@ discretization depending on the clustering task
@ James & Sugar [2003]: cluster-dependent spline decomposition,
@ Bouveyron & J. [2011]: parsimonious modeling of
cluster-dependent FPCA,
@ approximation of the notion of density

@ J. & Preda [preprint]: model-based clustering using approximation
of the notion of density for functional random variable.
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@ Preliminary on model-based clustering

9 Parsimonious modeling of cluster-dependent FPCA
@ The model
@ Model inference

e Numerical applications
@ Introductory example: Canada weather
@ Mars surface characterization
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@ Preliminary on model-based clustering
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Gaussian model-based clustering

Observed data

X1,...,Xn with  vi<i<n,  X;=(X,...,Xp) € RP

Clustering

consists in grouping each X; into one of the K clusters G, ..., Gk
(K known).

Let Z; = (Zj1, ..., Zik) indicates the cluster belonging:
@ Zj = 1if X; belongs to Gy,
@ Zix = 0 otherwise.
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Gaussian model-based clustering

The model

Each cluster of data is assumed to arise from a p-variate Gaussian
distribution

Xiz=1 ~ Np(uk, Zk)

@ marginal distribution is a mixture density

K
f(X) = ) mco (X pak, k)

k=1

@ m are the mixing proportions
@ ok (- ik, Xk) is the density of NVp(pu, Xk)

@ Bayes rule or Maximum A Posteriori rule classifies x into Gy
maximizing:
t(X) o< Tk di (X k> Tk)-
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Gaussian model-based clustering

Estimation: maximum likelihood
0 = (7, ik, L )k=1,...k IS estimated by maximizing the likelihood of

X =(X1,...,Xn)

Log-likelihood

n K
I(H’L) = Zln (Zﬂ-kqbk(xivﬂkvzk)) .
k=1

i=1
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Gaussian model-based clustering

Estimation: maximum likelihood

0 = (mk, ik, 2k )k=1,...k IS estimated by maximizing the likelihood of
X = (le"'axn)

Log-likelihood

n K
1(0,x) = Z'n (Zﬂ'k(bk(xinukazk)) :
k=1

i=1

= In) is hard to maximize.
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Gaussian model-based clustering

Estimation: maximum likelihood

0 = (7, ik, L )k=1,...k IS estimated by maximizing the likelihood of
X =(Xqg,...,Xn)

Log-likelihood

Z'n (Zﬂ'k(bk Xn#kazk))
i=1

= In}_ is hard to maximize.

The maximisation will be easier if z = (z4,...,zn) was known.
Assuming z is known, we define the completed log-likelihood:

<(0,x,2) Zzzm In (7 i (Xi, o, k) -

i=1 k=1
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Estimation - EM algorithm

The EM algorithm maximizes I; (0, x, z) rather than 1(6, x).
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Estimation - EM algorithm

The EM algorithm maximizes I; (0, x, z) rather than 1(6, x).

But as z is unknown, it is estimated !

Algorithme EM (CEM version)

@ lnit: random ze z
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Estimation - EM algorithm

The EM algorithm maximizes I; (0, x, z) rather than 1(6, x).

But as z is unknown, it is estimated !

Algorithme EM (CEM version)
@ lnit: random ze z
@ Mstep: conpute

9"+ — argmax 1 (6, X, 2)
0
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Estimation - EM algorithm

The EM algorithm maximizes I; (0, x, z) rather than 1(6, x).

But as z is unknown, it is estimated !

Algorithme EM (CEM version)

@ lnit: random ze z
@ Mstep: conpute

9"+ — argmax 1 (6, X, 2)
0

@ E step: estimate z according to (D)
(h+1) . (h+1) (h+1)
M ¢k(x’p’k 7Zk ) A
tk = k = = R and Zx = 1 for k = argmax ti,
S g Y, TMY) ¢
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Estimation - EM algorithm

The EM algorithm maximizes I; (0, x, z) rather than 1(6, x).

But as z is unknown, it is estimated !

Algorithme EM (CEM version)
@ lnit: random ze z
@ Mstep: conpute

9"+ — argmax 1 (6, X, 2)
0

@ E step: estimate z according to (D)
(h+1) . (h+1) (h+1)
M ¢k(x’p’k 7Zk ) A
tk = k = = R and Zx = 1 for k = argmax ti,
S g Y, TMY) ¢

repeat Mand E steps until I(d,x) convergence.
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Estimation - EM algorithm

The EM algorithm maximizes I(6, x, z) rather than 1(0, x).

But as z is unknown, it is estimated !

Algorithme EM
@ |lnit: random ze z
@ M step: conpute

") = argmax E g [le (60, X, Z)X = x]
0
where (" is the estimation of ¢ at this step of the algo.

@ E step: conpute E,mw[z] according to 9"+

k
K h+1 . (h+1 h+1)y °
Shame 06 I, B

repeat Mand E steps until I(d,x) convergence.

o e, £
Zg =tk =
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Estimation - selection of the number K of clusters

We can use a penalized likelihood criterion :
BIC = —2I(A) + vInn

where v is the number of model parameters.
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Estimation - illustration

Example of the EM convergence on the famous iris dataset.
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Estimation - illustration

Example of the EM convergence on the famous iris dataset.
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Estimation - illustration

Example of the EM convergence on the famous iris dataset.
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9 Parsimonious modeling of cluster-dependent FPCA
@ The model
@ Model inference
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Transformation of the observed curves

@ Data: {Xy,...,Xn} € L2[0, T] indep. realiz. of X = {X(t)}cjo,1]
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Transformation of the observed curves

@ Data: {Xy,...,Xn} € L2[0, T] indep. realiz. of X = {X(t)}cjo,1]

@ Observations : for each x;, only x; = x;(tj) are observed for
{tij j=1,...,m}.
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Transformation of the observed curves

@ Data: {Xy,...,Xn} € L2[0, T] indep. realiz. of X = {X(t)}cjo,1]

@ Observations : for each x;, only x; = x;(tj) are observed for
{tij j=1,...,m}.

@ Basis expansion : reconstruct the functional form of the data

e

X () =Y %(X)y(t),

i=1

7 = (11(X), ..., % (X)) is a random vector in RP (p known)
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Transformation of the observed curves

@ Data: {Xy,...,Xn} € L2[0, T] indep. realiz. of X = {X(t)}cjo,1]

@ Observations : for each x;, only x; = x;(tj) are observed for
{tij j=1,...,m}.

@ Basis expansion : reconstruct the functional form of the data

e

X () =Y %(X)y(t),

i=1

7 = (11(X), ..., % (X)) is a random vector in RP (p known)
= X; will be described by i = (i1, .-, Vip)-
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A group-specific functional latent model

Let {x;, ...,xink} being ny curves of Gy described by {71, ..., } € RP.

Assumptions
® {v1,..., M } indep. realiz. of I € RP.
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Let {x;, ...,xink} being ny curves of Gy described by {71, ..., } € RP.

Assumptions
® {v1,..., M } indep. realiz. of I € RP.

@ {Xijs ey Xink} are sample paths of a stochastic process which can
be described in a sufficient manner in a low-dimensional
subspace Eg [0, T] of L[0, T] with dimension d¢ < p.
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A group-specific functional latent model

Let {x;, ...,xink} being ny curves of Gy described by {71, ..., } € RP.

Assumptions
® {v1,..., M } indep. realiz. of I € RP.

@ {Xijs ey Xink} are sample paths of a stochastic process which can
be described in a sufficient manner in a low-dimensional
subspace Eg [0, T] of L[0, T] with dimension d¢ < p.

o {gokj }j:l,...,dk a basis of Ey [O, T],

@ {\1,..., A\n, } expansion coefficients of curves in {¢y }j=1,.. d,-

@ {\1,..., A\ } indep. realiz. of A € R%.

@ [ and A linked by
N=UkA+e,

where Uy a p x dx matrix and e € RP an indep. noise term.
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A group-specific functional latent model

Distributional assumptions
@ A~ N(my, Sk), where m € R% and Sy = diag(ai, ..., ad, )-
@~ N(O, Ek),
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A group-specific functional latent model

Distributional assumptions

@ A~ N(my, Sk), where m € R% and Sy = diag(ai, ..., ad, )-
" NN(O,EK),
o = FNN(uk,Zk), with k= Ugmyg and ZKIUKSKUIE-FEK.
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A group-specific functional latent model

Distributional assumptions

@ A~ N(my, Sk), where m € R% and Sy = diag(ai, ..., ad, )-
o 13 NN(O,EK),
o = FNJ\/'(,uk,Zk), with k= Ugmyg and ZKIUKSKUIE-FEK.

Parsimony assumptions By analogy to HDDC (Bouveyron et al. 2007)
@ =, is assumed to be such that Ay = Q} ¥, Qx can be written

ak1 0
0 } dk
0

Akd,

0 o (p— )

0 by

with Q¢ = [Uk, Vi] orthogonal and ay; > by forj =1, ..., d.
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The clustering model FunHDDC

Clustering background
@ LetZ; = (Zj1,...,Zi) indicates the group of the ith curve:
Zi = 1if the ith curve belongs to Gk, 0 otherwise.
@ Z; are unobserved.
@ Clustering task: predict the value of Z; for each observed curve x;.
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The clustering model FunHDDC

Clustering background
@ LetZ; = (Zj1,...,Zi) indicates the group of the ith curve:
Zi = 1if the ith curve belongs to Gk, 0 otherwise.
@ Z; are unobserved.
@ Clustering task: predict the value of Z; for each observed curve x;.

Clustering model
@ Each curve x; is assumed to be sample path of X, admitting a
basis expansion ~; whose marginal distribution is:

K
pP(v) = Zﬂkcb(% s Tk )

k=1

@ ¢ is the Gaussian density function,

o g = Ugmy,

° ¥y = QrAkQy,

o mx = P(Zx = 1) is the prior probability of the group Gy.
This model is quoted FUNHDDCg, 1, g, d,]-
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The FuhHDDC model and its submodels

Parsimonious submodels can be defined by constraining model
parameters within or between groups:

@ fixing the first dy diagonal elements of Ay to be common within
each class
= FunHDDC[akkakdk]

@ fixing by to be common between the classes
= FunHDDC[akijkdk]

= FunH DDC[ak bQy dy]

which both assume that the behavior of the error components
outside the class specific subspaces is common.
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9 Parsimonious modeling of cluster-dependent FPCA

@ Model inference
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Model inference: the funHDDC algorithm

FunHDDC: an EM-based algorithm
@ unsupervised problem — direct maximization of the likelihood
unfeasible,
= EM algorithm:

o E step:
computes the expectation of the complete log-likelihood
conditionally on the current value of the model parameter #(4—1),
o M step:
estimates the model parameter by maximizing the expectation of
the complete likelihood conditionally on the posterior probabilities

t{? computed in E step.
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Model inference: the funHDDC algorithm

The E step in fact reduces to the computation of the posterior
probabilities tx = P(Z; = k|X = X;):

K
D=1/ e (KO (6) —HET D)
(=1
with H{9Y () defined as:
-1 1 1
HE V() = [ = PeOIR, + o117 = PP
k

+Zlog(a M)+ (p — di) log (b)) — 2log(r ),

where Py is the projection operator on the latent space Ey
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Model inference: the funHDDC algorithm

The M step consists in updating estimates of model parameters:
@ the mixture proportions are estimated by 7r|(((‘) = nl(((‘)/n, with

(q) ZI |k ’

@ the group means are estimated by l‘k = q) S 1t(q)%
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Model inference: the funHDDC algorithm

The M step consists in updating estimates of model parameters:
@ the mixture proportions are estimated by 7r|(((‘) = nl(f‘)/n, with
(Q) Z k
1= I ’

@ the group means are estimated by Hk = q) S 1t(q)%

@ the dy first columns of Qy are updated by the eigenvectors
associated with the largest eigenvalues of W 2 CS”W% where

W = (Wj)1gjkep = fo ¥i(t)x(t)dt,
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Model inference: the funHDDC algorithm

The M step consists in updating estimates of model parameters:
@ the mixture proportions are estimated by 7r|((C‘) = nl(f)/n, with
(Q) Z k
1= I ’

@ the group means are estimated by #k = q) S 1t(q)%

@ the dy first columns of Qy are updated by the eigenvectors
associated with the largest eigenvalues of W 2 CS”W% where

W = (ij)1<1 k<p = fo w, Qﬁk(t)dt

@ the variance parameters ay;, j = 1, ..., di, are updated by the dy
1

largest eigenvalues of W %Cﬁq)w 2,
@ the variance parameters by are updated by
b{® = traceqwzCPwz) — Zjdk 1 al((?).
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Model inference: estimation of hyper-parameters

The intrinsic dimensions di are estimated using the scree-test of
Cattell which looks for a break in the eigenvalue scree.
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The number K of groups is determined using the BIC criterion.
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e Numerical applications
@ Introductory example: Canada weather
@ Mars surface characterization
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e Numerical applications
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An introductory example: Canada weather

The Canadian weather dataset:

@ itis a classical set of time series presented in details in [Ramsay &
Silverman],

@ it consists in the daily measured temperatures at 35 Canadian
weather stations across the country,

@ 35 curves measured at 365 times.

Experimental protocol:

@ we ran funHDDC for different numbers of groups and we kept the
result with the highest BIC value,

@ the most general model [ax by Qxdk] was used.
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An introductory example: Canada weather
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Fig. - Clustering in 4 groups (left) and group means (right).
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An introductory example: Canada weather

YeIIWﬁfe

hitghorse Uranium C%hu

Fig. - Geographical positions of the weather stations with their group labels.
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An introductory example: Canada weather
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An introductory example: Canada weather

PCA function 1 (Percentage of variability 97.5 )

PCA function 2 (Percentage of variability 12.5)

Harmonic 1
Harmonic 2
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-20
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-20
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-20

-40
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-40
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-40

=~ N\

T T T T T T
100 200 300 0 100 200 300

o

time Time

Fig. - Group 4 (mostly Pacific stations)

@ PCA function 1: high-variance during winter,
@ PCA function 2: time-shift effect.
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An introductory example: Canada weather

PCA function 1 (Percentage of variability 85.1)

PCA function 2 (Percentage of variability 17.6 )
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time Time Time

Fig. - Group 1 (mostly continental stations)

@ PCA function 2: + and — inversion.

Julien JACQUES (Lille 1) Clustering of functional data

December 8th 2011

34/46



An introductory example: Canada weather
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Fig. - Principal scores of the curves into the group-specific functional subspaces.
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e Numerical applications

@ Mars surface characterization
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Mars surface characterization

The data

Hyperspectral images (OMEGA instrument, Mars Express spacecraft)
C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes and S. Girard Retrieval of Mars surface
physical properties frim OMEGA hyperspectral images using regularized sliced inverse
regression, Journal of Geophysical Research, 2009, 114, E06005.

Image 300 x 128 For each pixel
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Mars surface characterization

Goal of the study
@ Characterization of the surface materials,

@ = clustering of the 38400 pixels,
@ number of groups expected by the experts: 8.

Results with fun-HDDC clustering
@ All the submodels lead to relatively similar results,

@ BIC tends to select more than 8 groups (about 10-13).
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Mars surface characterization

Results obtained with one of the most general model [ay by Qx D]

150
200

250

300

20 40 60 80 100 120

Mars photography and Classification in 8 groups

Consistent with the experts classification (in 8 groups): 51.96%
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Mars surface characterization

Results obtained with one of the most general model [ay by Qx D]

0.5
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Spectral Band

Mean functions of the 8 groups
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Mars surface characterization

Results obtained with one of the most general model [ay by Qx D]

PCA function 1 (Percentage of variability 93.4) PCA function 2 (Percentage of variability 4.5 )
< |
3 3
@ @
S 7 S
— o
§ 5
£ £
3 g
T o TN
S S
3 .
T T T T T T
o 50 100 150 200 250 4 50 100 150 200 250
Spectral Band Spectral Band

Class 4 (29.5%)
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Conclusion

The funHDDC algorithm:

@ is an extension of the multivariate clustering technique HDDC to
functional data,

@ itis a subspace clustering method which models and clusters the
data in a low-dimensional functional subspace,

@ it performs similarly or better than 2-step clustering methods while
allowing useful interpretations.

Future works:
@ extend the technigue to multidimensional functions or time series,

@ this would be possible by using a Gaussian model with
block-diagonal covariance matrices within the group-specific
functional subspaces.

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 42 | 46



Bibliography

@ C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes and S. Girard Retrieval of
Mars surface physical properties frim OMEGA hyperspectral images using
regularized sliced inverse regression, Journal of Geophysical Research, 2009,
114, E06005.

@ C. Bouveyron, S. Girard and C. Schmid High-Dimensional Data Clustering,
Computational Statistics and Data Analysis, 2007, 52[1], 502-519.

@ C. Bouveyron and J. Jacques, Model-based Clustering of Time Series in
Group-specific Functional Subspaces, Advances in Data Analysis and
Classification, 2011, 5[4], 281-300.

@ J. Jacques and C. Preda, Model-based clustering of functional data, Preprint HAL
n°00 628247.

@ J.0. Ramsay and B.W. Silverman, Functional data analysis, Springer, New York,
2005.

@ G.M. James and C.A. Sugar, Clustering for sparsely sampled functional data,
Journal of the American Statistical Association, 2003, 98[462], 397—408.

Julien JACQUES (Lille 1) Clustering of functional data December 8th 2011 43/ 46



Numerical comparisons on benchmark datasets

We used 4 different time series
datasets:

@ Kneading: 3 groups,

115 curves,
@ CBF: 3 groups, 930 curves,
@ Face: 4 groups, 112 curves,
@ ECG: 2 groups, 200 curves,

Face (4 groups) ECG @ groups)
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Comparison with fclust (James & Sugar, JASA, 2003)

Dataset Kneading CBF

Number of groups 3 3

Size 50 30

Method CCR BIC d CCR BIC d
FUNHDDC [ay; by Qu di ] 70 2403 211 633  -2430 (1,1,1)

FUnHDDC [ayjbQy d] 66.6  -2498  (1,1,1) | 633  -2498  (1,1,1)
FUnHDDC [ay by Qy dy] 70 -2193  (1,1,1) | 566 -2514  (1,1,1)
FunHDDC [ay bQy dy] 66.6  -2402  (1,1,1) | 633  -2402  (1,1,1)
FunHDDC [aby Qj dy] 66.6 -2195  (121) | 566 -2523  (1,1,1)

FunHDDC [abQ, dy ] 66.6  -2397 (1,1,1) 633  -2397  (1,1,1)
fclust 60 56.6

Dataset Face ECG

Number of groups 4 2

Size 24 100

Method CCR BIC d CCR BIC d
FunHDDC [ay; by Qx dk] 62.5 -2162 1121) 77 -6667 1.1)
FunHDDC [ay;bQy dk ] 50 -2286 1,1,1,1) 76 -6428 1,1)
FunHDDC [ay by Qi di] 62.5 -2078  (2,1,1,1) 77 -6333 1,1)

FunHDDC [ay bQy dk] 58.3 -2083 1.21,1) 77 -6191 1,1)
FunHDDC [aby Qy dk] 66.6 -2092 (2,1,21) 77 -6317 1,1)
FunHDDC [abQ di] 58.3 -2080 (2,1,1,1) 77 -6167 (1,1)
fclust 41.6 75
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Comparison with two-step methods

Julien JACQUES

Kneading Kneading
FunHDDC fancional 2-steps. Sphne coefl. FPCA scores
methods (241 instants) (20 splines) @
D Qe O ] 64.35 HDDC 66.09 53.91 2435
a,,bQ, dy | 62.61 MixtPPCA 65.22 64.35 6261
a, by Qi ] 64.35 molust 63.48 50.43 50
a,bQ, dy | 62.61 k-means 62.61 62.61 6261
ab, Q. dy ] 64.35 holust 63.48 63.48 6348
abQ, d | 62,61
CBF CBF
FunHDDC fancional 2-steps. Sphne coefl. FPCA scores
methods (128 instants) (20 splines) ar
D Qe O ] 64.84 HDDC 68.60 5118 68.17
a,,bQ, dy 70.43 MixtPPCA 65,50 51.29 68.27
a, by Qud 64.09 molust 61.18 62.79 68.06
a,bQ, dy ] 70.65 k-means 64.95 52.00 6484
ab, Q. dy ] 70.65 holust 60.86 57.96 66.13
abQ, d, 70.65
Face Face
FunHDDC fnctional 2-steps discretized Spiine coeff. FPCA scores
methods (350 instants) (20 splines) 3
D Qe O ] 56.25 HDDC 59.82 58.03 63.39
a,bQ, dy | 54.44 MixtPPCA 5454 61.36 64.77
a, b, Qy d | 51.78 ‘mclust 625 57.14 55.36
a,bQ, dy | 54.44 k-means 59.09 5341 59.00
ab, Qdy ] 6071 hclust 50.89 56.25 7821
abQ, dy 57.14
ECG ECG
FunHDDC Tnctional 2-steps discretized Spiine coeff. FPCA scores
methods (96 instants) (20 splines) (19
B D Qe O ] 75 HDDC 745 735 745
a,bQ, dy - MixtPPCA 745 735 745
a, b Qu 0 765 molust 81 805 815
a,bQ, dy | 745 k-means 745 725 745
ab, Q. dy ] 765 holust 73 765 64
abQ, d | 5
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