Regularized Mahalanobis Kernel for the Classification of Hyperspectral Images

M. Fauvel¹, A. Villa^{2,3}, J. Chanussot² and J. A. Benediktsson³

¹ DYNAFOR, INRA & ENSAT, INPT, Université de Toulouse - France ² GIPSA-Lab, Grenoble Institute of Technology - France ³ University of Iceland, Reykjavik - Iceland

Atelier Astrostatistique, Grenoble 2011

Outline

High dimensional spaces

Regularized Mahalanobis kernel

Subspace models Mahalanobis kernel SVM and Radius margin bound maximization

Experiments

Conclusions and perspectives

High dimensional spaces

Regularized Mahalanobis kernel

Subspace models Mahalanobis kernel SVM and Radius margin bound maximizatio

Experiments

Conclusions and perspectives

High dimensional data

• High number of measurements but limited number of samples.

 $\mathbf{x}_i \in \mathcal{X}^d$ with $d \gg 100, \; i \in \{1, \dots, n\}$ and n pprox d

- Hyperspectral images : each pixel has thousands of spectral variables
- X can be sparse
- \mathcal{X} can have different SNR
- Why:
 - A phenomenon depends on a lot of spectral variables
 - We don't know which variables will be useful
 - Quality and quantity of information !

Some properties of HD spaces 1/3

- The volume of an hypersphere tend to zero when the dimension grows No closed neighbors
- The volume of an hypersphere concentrates in an outside shell Normally distributed data concentrates in the tails
- The volume of an hypersphere is negligible compare to the volume of an hypercube

Uniformly distributed data concentrates in the corners

Some properties of HD spaces 2/3

 \blacksquare pdf to have a sample $\|\mathbf{x}\| = t \; \big(\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \big)$

$$f(t) = \frac{dt^{d-1}\exp(-t^2/2)}{d^{(d/2)}\Gamma(d/2+1)}, \text{ maximum for } t^* = (d-1)^{0.5}$$

Some simulations: n = 5000, $||\mathbf{x}||$.

Some properties of HD spaces 3/3

Concentration of measure phenomenon: if x random vector with i.i.d. variables

Empty space phenomenon: most of the space is empty A curse but also a blessing!

Implication for classification algorithms 1/2

Generative methods

- Hughes phenomenon: For a fixed training set, there exits an optimal dimension
- Statistical estimation very difficult: Emptiness + number of parameters
- Gaussian mixture models
 - \star Number of parameters $\propto d^2$ by class
 - $\star \Sigma^{-1}$ ill-posed
- Non-parametric models
 - \star Number of samples to approximate a Gaussian law $\propto 10^{0.6d}$

Discriminative methods

- Number of points to uniformly sample a unit hypercube: 10^d
- Methods based on nearest neighbors fail:
 - ★ k-nn
 - * Adjacency matrix (e.g. laplacian graph)
 - ★ Local kernel machines
- More generally, methods based on Euclidean distance fail

Implication for classification algorithms 2/2

Emptiness phenomenon: the classes are more separable!

 $\mathbf{x}_1 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $\mathbf{x}_2 \sim \mathcal{N}(oldsymbol{arepsilon}, \mathbf{I})$

Gaussian mixture, Minimum distance and Linear-SVM

Existing solutions

Simple models:

- Linear models
- Gaussian models: Σ diagonal, equal for each class
- **Dimension reduction:** $\mathbf{x} \rightarrow \phi(\mathbf{x})$
 - Statistical approach: PCA, FDA, ICA
 - Local distance: Laplacian eigenmaps, LLE, CCA
- Kernel methods: expect local kernels (evaluation of a new sample depends on its neighbors in the training set)
- **Regularization**: Tikhonov $\Sigma^{-1} \rightarrow (\Sigma + \lambda \mathbf{I})^{-1}$
- **Subspace models**: Each class is located in a specific subspace: Σ is constrained
 - Probabilistic PCA
 - High Dimensional Discriminant Analysis (HDDA) models

Subspace models and kernel methods

- Use emptiness property to construct the kernel
- How:
 - Mahalanobis distance for class c:

$$d_{\mathbf{\Sigma}_c}(\mathbf{x}, \mathbf{z}) = \sqrt{(\mathbf{x} - \mathbf{z})^t \mathbf{\Sigma}_c^{-1}(\mathbf{x} - \mathbf{z})}$$

Gaussian Radial kernel:

$$k_g(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{d(\mathbf{x}, \mathbf{z})^2}{2\sigma^2}\right)$$

Mahalanobis kernel:

$$k_m(\mathbf{x}, \mathbf{z}|c) = \exp\left(-rac{(\mathbf{x} - \mathbf{z})^t \mathbf{\Sigma}_c^{-1}(\mathbf{x} - \mathbf{z})}{2\sigma^2}
ight)$$

High dimensional spaces

Regularized Mahalanobis kernel

Subspace models Mahalanobis kernel SVM and Radius margin bound maximization

Experiments

Conclusions and perspectives

Kernel methods

Kernel function: It computes the similarity between two samples. It is equivalent to a dot product in some feature space:

 $k(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle_{\mathcal{H}}, \phi : \mathbb{R}^d \mapsto \mathcal{H}$

$$\begin{array}{c} (c, c) \\ (c,$$

• Kernel methods: The kernel is at the basis of the processing.

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}, \mathbf{x}_i) + b$$

Some kernels:

- Linear: $k(\mathbf{x}, \mathbf{z}) = \langle \mathbf{x}, \mathbf{z} \rangle$
- Polynomial: $k(\mathbf{x}, \mathbf{z}) = (\langle \mathbf{x}, \mathbf{z} \rangle + q)^p$

The HDDA model 1/3

Family of parsimonious models for HD data [Bouveyron et all, 2007]

Cluster assumption: each class *c* lives in a specific subspace

Covariance matrix of class *c*:

$$\mathbf{\Sigma}_{c} = \mathbf{Q}_{c} \mathbf{\Lambda}_{c} \mathbf{Q}_{c}^{t} = \sum_{i=1}^{d} \lambda_{ci} \mathbf{q}_{ci} \mathbf{q}_{ci}^{t}$$

■ HDDA: diag(
$$\Lambda_c$$
) = $\left[\underbrace{\lambda_{c1} \dots \lambda_{cp_c}}_{p_c} \underbrace{b_c \dots \dots b_c}_{d-p_c}\right]$ with $p_c \ll d$

Covariance matrix of class *c* under HDDA:

$$\mathbf{\Sigma}_{c} = \underbrace{\sum_{i=1}^{p_{c}} \lambda_{ci} \mathbf{q}_{ci} \mathbf{q}_{ci}^{t}}_{\mathcal{A}_{c}} + \underbrace{b_{c} \sum_{i=p_{c}+1}^{d} \mathbf{q}_{ci} \mathbf{q}_{ci}^{t}}_{\tilde{\mathcal{A}}_{c}}$$

• A_c is the signal subspace and \bar{A}_c is the noise subspace $(\mathbb{R}^d = A_c \bigoplus \bar{A}_c)$

The HDDA model 2/3

In \mathbb{R}^3 :

• The inverse can be computed explicitly:

$$\boldsymbol{\Sigma}_{c}^{-1} = \sum_{i=1}^{p_{c}} \frac{1}{\lambda_{ci}} \mathbf{q}_{ci} \mathbf{q}_{ci}^{t} + \frac{1}{b_{c}} \sum_{i=p_{c}+1}^{d} \mathbf{q}_{ci} \mathbf{q}_{ci}^{t}$$

$$\mathbf{U} \text{sing } \mathbf{I} = \sum_{i=1}^{d} \mathbf{q}_{ci} \mathbf{q}_{ci}^{t},$$

$$\boldsymbol{\Sigma}_{c}^{-1} = \sum_{i=1}^{p_{c}} \left(\frac{1}{\lambda_{ci}} - \frac{1}{b_{c}}\right) \mathbf{q}_{ci} \mathbf{q}_{ci}^{t} + \frac{1}{b_{c}} \mathbf{I}$$

The HDDA model 3/3

So what?

- Less parameters have to be estimated (d = 100 and $p_c = 10$)
 - * Full Σ : d(d+3)/2 parameters \rightarrow 5150
 - * HDDA: $d(p_c + 1) + 2 p_c(p_c 1)/2$ parameters \rightarrow 1057
- Better than PCA
 - \star x and z may be artificially closed in \mathcal{A}_c
 - \star An accurate estimation of p_c is necessary
- Estimation: From the sample covariance matrix

$$\hat{\mathbf{\Sigma}}_{c} = rac{1}{n_{c}}\sum_{i=1}^{n_{c}}ig(\mathbf{x}_{i}-ar{\mathbf{x}}_{c}ig)ig(\mathbf{x}_{i}-ar{\mathbf{x}}_{c}ig)^{t}, \; \mathbf{x}_{i}\in c$$

- $\left\{ \hat{\lambda}_{ci} \right\}_{i=1}^{p_c} \text{ are estimated by the first } p_c \text{ eigenvalues of } \hat{\Sigma}_c \\ \left\{ \hat{\mathbf{q}}_{ci} \right\}_{i=1}^{p_c} \text{ are estimated by the first } p_c \text{ eigenvectors of } \hat{\Sigma}_c \\ \hat{\boldsymbol{\lambda}}_{ci} \text{ are stringted by } \left(\operatorname{trage}(\hat{\Sigma}) \sum_{i=1}^{\hat{p}_c} \hat{\boldsymbol{\lambda}}_i \right) / (d_i \hat{\boldsymbol{\lambda}}_i)$
- \hat{b}_c is estimated by $\left(\operatorname{trace}(\hat{\boldsymbol{\Sigma}}_c) \sum_{i=1}^{\hat{p}_c} \hat{\lambda}_{ci} \right) / (d \hat{p}_c)$
- *p*_c is estimated with the scree test of Catell

Mahalanobis kernel 1/2

- $\{\hat{\lambda}_{ci}\}_{i=1}^{p_c}$ and \hat{b}_c are switched to kernel hyperparameters $\{\sigma_i\}_{i=1}^{p_c+1}$
- The kernel:

$$k_m(\mathbf{x}, \mathbf{z}|c) = \exp\left(-\frac{1}{2}\left(\sum_{i=1}^{\hat{p}_c} \frac{(\mathbf{x} - \mathbf{z})^t \hat{\mathbf{q}}_{ci} \hat{\mathbf{q}}_{ci}^t(\mathbf{x} - \mathbf{z})}{\sigma_i^2} + \frac{\|\mathbf{x} - \mathbf{z}\|^2}{\sigma_{\hat{p}_c+1}^2}\right)\right)$$

Another formulation: product of Gaussian kernels

$$k_m(\mathbf{x}, \mathbf{z}|c) = k_g(\mathbf{x}, \mathbf{z}) imes \prod_{i=1}^{\hat{p}_c} k_g(\hat{\mathbf{q}}_{ci}^t \mathbf{x}, \hat{\mathbf{q}}_{ci}^t \mathbf{z})$$

The Mahalanobis kernel constructs with the HDDA model is a mixture of a Gaussian kernel on the original data and a Gaussian kernel on the p_c first principal components of the considered class

Mahalanobis kernel 2/2

 $k_m(\mathbf{0}, \mathbf{x}|c)$ with $\mathbf{0} = [0, 0]$ and $\mathbf{x} \in [-1, 1]^2$

•
$$\Sigma_c = [0.6 - 0.2; -0.2 \ 0.6]$$
 and $p_c = 1$

- Red contour line $\rightarrow k_m = 0.75$
- (a): Gaussian kernel
- (b): Mahalanobis kernel with $\sigma_1^2 = \sigma_2^2 = 0.5$
- $\scriptstyle \bullet$ (c): Mahalanobis kernel with $\sigma_1^2=1.5$ and $\sigma_2^2=0.5$

L2-Support Vectors Machines 1/2

• Supervised method: $S = \left\{ (\mathbf{x}_i, y_i) \right\}_{i=1}^n$, $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$

$$h(\mathbf{z}) = \operatorname{sign}(f(\mathbf{z}))$$
 with $f(\mathbf{z}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{z}, \mathbf{x}_i) + b$

• Hyperparameters $(\{\alpha_i\}_{i=1}^n, b)$ learn by solving:

$$\min_{\boldsymbol{\alpha}, b} \left[\frac{1}{C} \|\boldsymbol{f}\|^2 + \sum_{i=1}^n L(y_i, f(\mathbf{x}_i))^2 \right]$$

$$\|f\|^2 = \sum_{i,j=1}^n \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j)$$

$$L(y_i, f(\mathbf{x}_i))^2 = \max(0, 1 - y_i f(\mathbf{x}_i))^2$$

L2-Support Vectors Machines 2/2

• Equivalently: with $\tilde{k}(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_i, \mathbf{x}_j) + C^{-1}\delta_{ij}$

$$\max_{\alpha} g(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{\substack{i,j=1\\n}}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \tilde{k}(\mathbf{x}_{i}, \mathbf{x}_{j})$$

subject to
$$0 \le \alpha_{i} \text{ and } \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

Radius-margin bound 1/2

In our setting
$$\mathbf{p} = [\sigma_1^2, \dots, \sigma_{\hat{p}+1}^2, C]$$

Estimate of the generalization error: Radius-margin bound (upper bound of LOO)

$$\mathcal{T}(\mathbf{p}) := \mathcal{R}^2 \tilde{g}$$

ğ depends on (α̃, p) and α̃ depends on p. But, since ğ depends on α via an optimization problem, the gradient of α w.r.t. p does not enter into the computation of ğ.

$$\begin{split} \tilde{g}(\mathbf{p}) &= \max g(\mathbf{p}, \alpha) &= g\left(\mathbf{p}, \tilde{\alpha}(\mathbf{p})\right) \\ \mathbf{\nabla} \tilde{g} &= \begin{pmatrix} \left(\frac{\partial g}{\partial \mathbf{p}}, \frac{\partial g}{\partial \tilde{\alpha}}\right) \\ &= \left(\frac{\partial g}{\partial \mathbf{p}}, \frac{\partial g}{\partial \alpha}\right|_{\alpha = \tilde{\alpha}} \frac{\partial \alpha}{\partial \mathbf{p}} \end{pmatrix} &= \left(\frac{\partial g}{\partial \mathbf{p}}, \mathbf{0}\right) \end{split}$$

- Gradient descent on the radius margin bound: $\nabla T = \frac{\partial R^2}{\partial \mathbf{p}}g + R^2 \frac{\partial g}{\partial \mathbf{p}}$
- Training: min max problem (non-convex)

Radius-margin bound 2/2

• Toy example: $\{\mathbf{x} | \mathsf{var}(x_1) \ll \mathsf{var}(x_2)\}$

Block diagram

- Multiclass: one classifier per class (but $SVM_{c_i \text{ vs } c_i} \neq SVM_{c_i \text{ vs } c_i}$)
- Complexity:
 - ▶ HDDA: $\frac{2d^3}{3}$ or p^2d , computation of the eigenvalues/eigenvectors
 - SVM: $\approx dn^3$, CQP solver
 - Gradient step: $\approx (p+1)n^2$

High dimensional spaces

Regularized Mahalanobis kernel

Subspace models Mahalanobis kernel SVM and Radius margin bound maximiz

Experiments

Conclusions and perspectives

Simulated data 1/3

Experimental setup: Mixture of Gaussian following HDDA model

$$\mathbf{x} = \sum_{i=1}^{c} lpha_i \mathbf{s}_i + \mathbf{b}, \ y = j \text{ such as } lpha_j = \max_i lpha_i \text{ and } \mathbf{s}_i \sim \mathsf{HDDA}$$

- $d = 413, p = 10, n = 1000, n_t = 1500 \text{ and } SNR = 1$
- Mean values were extracted from spectral library
- Number of classes $N_c = 2$, 3 and 4
- 50 tries

Simulated data 1/3

Experimental setup: Mixture of Gaussian following HDDA model

$$\mathbf{x} = \sum_{i=1}^{c} \alpha_i \mathbf{s}_i + \mathbf{b}, \ y = j \text{ such as } \alpha_j = \max_i \alpha_i \text{ and } \mathbf{s}_i \sim \mathsf{HDDA}$$

•
$$d = 413, p = 10, n = 1000, n_t = 1500 \text{ and } SNR = 1$$

- Mean values were extracted from spectral library
- Number of classes $N_c = 2$, 3 and 4
- 50 tries

Simulated data 2/3

- The model has 5 parameters (Sylvain Douté): the grain size of water and CO₂ ice, the proportion of water, CO₂ ice and dust.
- $\mathbf{x} \in \mathbb{R}^{184}$ and n = 31500.

• Fives classes according to the grain size of water, $n = n_t = 15750$

Simulated data 3/3

• Estimated subspace size: $s = 10^{-5}$

с	1	2	3	4	5
\hat{p}	15	14	12	13	14

Classification accuracies:

Kernel	Gaussian	PCA-Mahalanobis	HDDA-Mahalanobis	
y = 50	99.7	99.7	99.8	
y = 150	97.6	98.2	98.3	
y = 250	94.7	96.0	96.1	
y = 350	89.4	93.4	93.4	
y = 450	95.0	95.3	95.4	
OA	78.3	91.1	91.3	
K	85.4	88.9	89.1	

• McNemar(HDDA/PCA) \rightarrow 2.58

Influence of the parameter \hat{p}_c

• OA vs \hat{p}_c (class *y=350*):

Real data

- Data from the imaging spectrometer OMEGA (visible and infra red, 0.95-4.15, 184 wavelengths). Atmospherically corrected (S. Douté).
- Parameters learn with the simulated data.
- Colormap:
 - 0: no data
 - ▶ 1: y = 50
 - ▶ 2: *y* = 150
 - ▶ 3: y = 250
 - ▶ 4: *y* = 350
 - ▶ 5: *y* = 450

Gaussian

HDDA

Regularized Mahalanobis Kernel, M. Fauvel, DYNAFOR - INRA

High dimensional spaces

Regularized Mahalanobis kernel

Subspace models Mahalanobis kernel SVM and Radius margin bound maximizat

Experiments

Conclusions and perspectives

Conclusion

- Classification of hyperspectral images
- A Mahalanobis kernel based on HDDA was proposed:
 - Cluster assumption
 - Multiple hyperparameters
- Link with mixture kernels
- SVM Classification framework
- Good classification results on three data sets
 - Better than the conventional RBF
 - As good as PCA + RBF

Perspectives 1/2

Implementation: Optimization of the hyperparameters

- Estimation of \hat{p}_c
- Construction of others kernel:

$$k(\mathbf{x}, \mathbf{z}) = \left(\mathbf{x}^t \mathbf{\Sigma}^{-1} \mathbf{z} + 1\right)^p$$

Investigate mixture of kernels :

$$k_m(\mathbf{x}, \mathbf{z}|c) = \mu_o k_g(\mathbf{x}, \mathbf{z}) + \sum_{i=1}^{\hat{p}_c} \mu_i k_g(\hat{\mathbf{q}}_{ci}^t \mathbf{x}, \hat{\mathbf{q}}_{ci}^t \mathbf{z})$$

Discriminative subspaces (Fisher ...)

- Supervised VS Unsupervised
- Model transfert : From simulated data to real data
- Semi-supervised methods
- Face the strong non-linearity of the physical model (saturation of the parameters).

Regularized Mahalanobis Kernel for the Classification of Hyperspectral Images

M. Fauvel¹, A. Villa^{2,3}, J. Chanussot² and J. A. Benediktsson³

 1 DYNAFOR, INRA & ENSAT, INPT, Université de Toulouse - France 2 GIPSA-Lab, Grenoble Institute of Technology - France 3 University of Iceland, Reykjavik - Iceland

Atelier Astrostatistique, Grenoble 2011