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High dimensional spaces
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High dimensional data

m High number of measurements but limited number of samples.

x; € X% with d > 100, i€ {1,...,n} and n~ d

m Hyperspectral images : each pixel has thousands of spectral variables
m X can be sparse
m X can have different SNR
n Why:
> A phenomenon depends on a lot of spectral variables

> We don't know which variables will be useful
> Quality and quantity of information !
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Some properties of HD spaces 1/3

m The volume of an hypersphere tend to zero when the dimension grows

No closed neighbors

m The volume of an hypersphere concentrates in an outside shell

Normally distributed data concentrates in the tails

m The volume of an hypersphere is negligible compare to the volume of an

hypercube

Uniformly distributed data concentrates in the corners
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Some properties of HD spaces 2/3
m pdf to have a sample ||x|| = ¢ (x ~ N(0,1))

dt ' exp(—12/2)

. * 0.5
f(t) = m maximum for ¢° = ((] — 1)
m Some simulations: n = 5000, ||x]|.
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Some properties of HD spaces 3/3

m Concentration of measure phenomenon: if x random vector with i.i.d. variables

dy (x) — d (%)
—_—— —0
dm(X) p
4 1/1
for all Minkowski norm: ||x|| = (Zi:l \$Z|l) ,1=1,2...
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m Empty space phenomenon: most of the space is empty

A curse but also a blessing!
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Implication for classification algorithms 1/2

m Generative methods

v

Hughes phenomenon: For a fixed training set, there exits an optimal dimension

Statistical estimation very difficult: Emptiness + number of parameters
> Gaussian mixture models

v

+ Number of parameters < d? by class
* 271 ill-posed
> Non-parametric models

* Number of samples to approximate a Gaussian law oc 10°-6¢

m Discriminative methods

» Number of points to uniformly sample a unit hypercube: 10¢
> Methods based on nearest neighbors fail:

* k-nn

* Adjacency matrix (e.g. laplacian graph)

* Local kernel machines

> More generally, methods based on Euclidean distance fail
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Implication for classification algorithms 2/2

m Emptiness phenomenon: the classes are more separable!

x1 ~ N (0,I) and x2 ~ N (e, 1)
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Existing solutions

= Simple models:

> Linear models
> Gaussian models: X diagonal, equal for each class

m Dimension reduction: x — ¢(x)

> Statistical approach: PCA, FDA, ICA
> Local distance: Laplacian eigenmaps, LLE, CCA

m Kernel methods: expect local kernels (evaluation of a new sample depends on its
neighbors in the training set)

m Regularization: Tikhonov 7! — (X + AI)™*

m Subspace models: Each class is located in a specific subspace: X is constrained

> Probabilistic PCA
> High Dimensional Discriminant Analysis (HDDA) models
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Proposed approach

Subspace models and kernel methods

m Use emptiness property to construct the kernel

= How:

> Mahalanobis distance for class c:

ds, (x,2z) = \/(x - z)tﬁlzl(x —z)

x,z)?
kg(x,2) = exp <d(’))

202

> Gaussian Radial kernel:

m Mahalanobis kernel:

o (%, 2] ) = exp ( (x—2)'S; ' (x— z))

202
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Regularized Mahalanobis kernel
Subspace models
Mahalanobis kernel

SVM and Radius margin bound maximization
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Kernel methods

m Kernel function: It computes the similarity between two samples. It is equivalent
to a dot product in some feature space:

k(x,2) = ($(x), d(2)n, ¢:R" = H

]
9%

£&° g0 %
0%% ¢
0 SN

m Kernel methods: The kernel is at the basis of the processing.

f(x) = Z aik(x,x;) + b

m Some kernels:
> Linear: k(x,z) = (x,z)

> Polynomial: k(x,z) = ((x7 z) + q)p
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The HDDA model 1/3

m Family of parsimonious models for HD data [Bouveyron et all, 2007]

Cluster assumption: each class c lives in a specific subspace

m Covariance matrix of class c:

d
2(; = QCA(JQZ = Z )\uqczqiz

=1
m HDDA: diag(Ac) = [Aet ... Aep e b, | with p. < d
—_—— N ——

Pe d—pec
m Covariance matrix of class ¢ under HDDA:

Pc

3. 72/\17(1(&1“-0-5 Z qwqu

i=pet1

A A

m A. is the signal subspace and A, is the noise subspace (Rd = A, @flc)
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The HDDA model 2/3
m In R%:

€3

€
m The inverse can be computed explicitly:
S} 1 <
.= Zl Mot dcidei + b .ZJrl QciQei
i= i=pe

m Using I = 25:1 qeiql,

Pc

o 11y, 1
.= Z <>\ci — E)Q(:zqmi + .

i=
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The HDDA model 3/3

= So what?
> Less parameters have to be estimated (d = 100 and p. = 10)

* Full 3: d(d + 3)/2 parameters — 5150
* HDDA: d(p. + 1) +2 — p.(p. — 1)/2 parameters — 1057

> Better than PCA

* x and z may be artificially closed in A,
* An accurate estimation of p. is necessary

m Estimation: From the sample covariance matrix

e

26: iz (Xific)(Xi*ic)tv X; €c¢

i=1

v

{S\Ci}fil are estimated by the first p. eigenvalues of 3,
> {qa,,;}i’;l are estimated by the first p. eigenvectors of .

be is estimated by (trace(ﬁ)c) - Z?;l :\Ei)/(d — De)
Pe is estimated with the scree test of Catell

v

v

Regularized Mahalanobis Kernel, M. Fauvel, DYNAFOR - INRA 16/34



Mahalanobis kernel 1/2

pet1
i=1

{5\01-}1:;1 and b, are switched to kernel hyperparameters {ai}

m The kernel:

km(x,2|c) = exp

m Another formulation: product of Gaussian kernels

i’c
(%, 2]¢) = ky(x,2) x [ ] kal@lix, éliz)

i=1
m The Mahalanobis kernel constructs with the HDDA model is a mixture of a

Gaussian kernel on the original data and a Gaussian kernel on the p. first principal

components of the considered class
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Mahalanobis kernel 2/2

ki (0, x|c) with 0 = [0,0] and x € [~1,1]?

.|

m X, =[0.6 —0.2,-0.2 0.6] and p. =

m Red contour line — k,, = 0.75

m (a): Gaussian kernel

m (b): Mahalanobis kernel with o = 03 = 0.5

m (c): Mahalanobis kernel with 0% = 1.5 and 03 = 0.5
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L2-Support Vectors Machines 1/2

m Supervised method: S = {(xi, yi)}:;l, x; € R and y; € {—1,1}
h(z) = sign(f( ) W|th f(z Za k(z, %)
m Hyperparameters ({ai}?zl, b) learn by solving:
. 1 2 - 2
min | =11+ (v, F6x)
i=1

> AP =00 ok, x5)
> L(yi,f(xi))2 = max (07 1— yif(xi))2

//y/ifixi) e o °
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L2-Support Vectors Machines 2/2
m Equivalently: with k(x;, x;) = k(xs,xj) + C 15

n 1 n 5
max g(a) = Zai -3 Z @iy yik(Xi, X;)
=1

i,j=1
n

subject to 0 < «; and Zaiyi =0

=1

m Toy examples:
4
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Radius-margin bound 1/2

® In our setting p = [07,...,05,,, C]
m Estimate of the generalization error: Radius-margin bound (upper bound of LOO)
T(p) =R

m § depends on (&, p) and & depends on p. But, since § depends on « via an
optimization problem, the gradient of o w.r.t. p does not enter into the
computation of 3.

ip) = max g(p, @) = g(p,a(p))

99 _ (99,

op’ - op’

Pa 2 -
IR g—&-'RQ@

m Gradient descent on the radius margin bound: V7T = -
op op

m Training: min max problem (non-convex)
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Radius-margin bound 2/2

m Toy example: {x’var(xl) < var(z)}

0 -2
log,,(0) log,(0)

Test errors Radius-margin bound
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Block diagram

{(X, y)}?:l

m Multiclass: one classifier per class (but SVMc, vs ¢; # SVMq; vs ¢;)
m Complexity:
» HDDA: % or p?d, computation of the eigenvalues/eigenvectors
> SVM: =~ dn3, CQP solver
> Gradient step: = (p + 1)n?
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Experiments
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Simulated data 1/3

m Experimental setup: Mixture of Gaussian following HDDA model

c
X = Zaisi +b, y =jsuch as a; = max a; and s; ~ HDDA

i=1

> d =413, p =10, n = 1000, n; = 1500 and SNR =1
> Mean values were extracted from spectral library

» Number of classes N. = 2, 3 and 4

> 50 tries
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Simulated data 1/3

m Experimental setup: Mixture of Gaussian following HDDA model

X = Za,;s,; +b, y =jsuch as aj = maxa; and s; ~ HDDA

i=1

vVvyVvYyYy

50 tries

d =413, p =10, n = 1000, n; = 1500 and SNR =1
Mean values were extracted from spectral library
Number of classes N. = 2, 3 and 4
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Simulated data 2/3

m The model has 5 parameters (Sylvain Douté): the grain size of water and CO,
ice, the proportion of water, CO2 ice and dust.

m x € R'¥® and n = 31500.

m Fives classes according to the grain size of water, n = n; = 15750

0 I

0 50 100 150 200

Regularized Mahalanobis Kernel, M. Fauvel, DYNAFOR - INRA 26/34



Simulated data 3/3

m Estimated subspace size: s = 107°

C

p

15

14

12

13

14

m Classification accuracies:

Kernel Gaussian | PCA-Mahalanobis | HDDA-Mahalanobis
y =50 99.7 99.7 99.8
y = 150 97.6 98.2 98.3
y = 250 94.7 96.0 96.1
y = 350 89.4 93.4 93.4
y = 450 95.0 95.3 95.4
OA 78.3 91.1 91.3
K 85.4 88.9 89.1

m McNemar(HDDA/PCA) — 2.58
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Influence of the parameter p..

m OA vs p. (class y=350):
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Real data

m Data from the imaging spectrometer OMEGA (visible and infra red, 0.95-4.15,
184 wavelengths). Atmospherically corrected (S. Douté).

m Parameters learn with the simulated data.

m Colormap:

>

vVVvYyVvYVvYyYy

BARE A

0:

no data
y =50

y = 150
y = 250
y = 350
y = 450

Gaussian

5 5 5

4 4 4

3 3 3

2 2 2

1 1 1

0 0 0
PCA HDDA

Regularized Mahalanobis Kernel, M. Fauvel, DYNAFOR - INRA 29/34



Conclusions and perspectives

Regularized Mahalanobis Kernel, M. Fauvel, DYNAFOR - INRA 30/34



Conclusion

Classification of hyperspectral images

m A Mahalanobis kernel based on HDDA was proposed:
> Cluster assumption

> Multiple hyperparameters

m Link with mixture kernels

m SVM Classification framework
m Good classification results on three data sets

> Better than the conventional RBF
> As good as PCA + RBF
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Perspectives 1/2

m Implementation: Optimization of the hyperparameters
m Estimation of p.

Construction of others kernel:

k(x,z) = (xf’Z_lz + 1)p

m Investigate mixture of kernels :

Pe
ki (%, 7€) = poky(x,2) + Y piky (@i, iiz)

i=1

m Discriminative subspaces (Fisher ...)
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Perspectives 2/2

m Supervised - VS - Unsupervised
m Model transfert : From simulated data to real data
m Semi-supervised methods

m Face the strong non-linearity of the physical model (saturation of the parameters).
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