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Spectral Mixture Analysis
Linear Mixing Model (LMM): Yp = Zle m,a,, +n,

Reference: IEEE Signal Proc. Magazine, Jan. 2002.
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Reference: IEEE Signal Proc. Magazine, Jan. 2002.

39



CMC algorithm for spectral unmixing
Introduction

Spectral Mixture Analysis
Linear Mixing Model (LMM): Yp = Zle m,a,, +n,

Reference: IEEE Signal Proc. Magazine, Jan. 2002.

39



MCMC algorithm for spectral unmixing

Introduction

Spectral Mixture Analysis

Linear Mixing Model (LMM):

Reflectance

SNR = 20dB
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(0.4pm — 2.5um),
R=3:
> green grass
(solid line),
> galvanized steel metal
(dashed line),
> bare red brick
(dotted line),

» = [0.3,0.6,0.1]"
SNR ~ 20dB.
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Introduction
Spectral Mixture Analysis
Linear Mixing Model (LMM): Vp = Zle mya,, + n,
SNR = 2008 > L - 825
" ‘ ‘ ‘ (0.4pm — 2.5um),
04 > R == 3:

> green grass
(solid line),

> galvanized steel metal
(dashed line),

> bare red brick

— i by R b, | (dotted line),
& 1 > a, =[0.3,0.6,0.1]"
Wavelengih ) : = » SNR ~ 20dB.

Problem
Estimation of a, under positivity and additivity constraints
and my,...,mpg under positivity constraints.
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Spectral unmixing steps

Preprocessing
Huge data volume = dimensional reduction algorithms

» Principal Component Analysis (PCA): projection into a lower
dimensional space spanned by directions of high magnitudes,

» Maximum Noise Fraction (MNF): projection maximizing the SNR,
> ...

Remark: optional step for some algorithms.

Estimation

(1) Endmember extraction step (i.e., estimation of the spectral
components),

(2) inversion (abundance estimation),

(142) joint estimation of the endmembers and abundances.
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Endmember extraction (1)
Convex geometry

Band b

P>
Band «a
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Endmember extraction (1)
Convex geometry

Searching for purest pixels (= simplex of maximum volum inscribed
in the data)

Skever 1 4
Skewer 2
o o \© Extrene pixel
o
o o o o
o ° T Skewer3
> o ° o :
© o o © @
Exctreme piel
o
o o
(a) Pixel Purity Index (PPI) (b) N-FINDR

or successive projections onto orthogonal subspaces (VCA, ORASIS).

Searching for simplex of minimum volum inscribing the data
“Minimum Volume Transform” (MVT) algorithms and variants.
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Inversion (2)
Constrained inverse problem

Constrained optimization
a- >0, Vr=1,....R

. . . . J— —_ 2
Minimizing J(a) = [ly — Mal|® s.t. { Zil ar =1

with M = [my, ..., mg].
» Fully Constrained Least Squares (FCLS) [Heinz et al., 2001],
» Scaled Gradient Methods (SGM) [Theys et al., 2009],

» Primal-dual algorithms [Chouzenoux et al., 2011],
> ...
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Spectral Mixture Analysis

Linear Mixing Model (LMM): Vp = Zle m,a, , + 1,

» Supervised case: my, ..

.,mp are known,
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» Semi-supervised case: my,...,mpg are partially unknown (R
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Spectral Mixture Analysis

Linear Mixing Model (LMM): Vp = Zf:1 m,a, , + 1,
» Supervised case: my,...,mpg are known,
» Semi-supervised case: my,...,mpg are partially unknown (R

unknown, the m, belong to a fixed spectral library),

> UHSllpCI‘ViS()d case: Mmyp, ..., mpeg are unknown.
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Problem formulation

Hierarchical Bayesian modeling
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Prior distributions
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Gibbs sampler
Experiments: synthetic data
Experiments: real images
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Problem formulation

Observation model

For a given pixel p observed in L spectral bands:

R

Yp =D, Mpap, + 0y
= Ma,, +n,
Now, consider P pixels:
Y =MA-+N
where
Y :[Y1a-~-aYP]7 M :[mla"'7mR]7
A :[ala"'aaP]v N :[1’117 '7nP}'
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Problem formulation

Observation model

For a given pixel p observed in L spectral bands:

R

Yp = Dpmi MGy + 1y
= Ma,, +n,
Now, consider P pixels:
Y =MA+N

where
Y :[Y1a-~-aYP]7 M :[mla"'7mR]7
A =]Jay,...,ap|, N =[ny,...,np].

Factorize Y ~ MA under positivity and additivity constraints on A
and positivity constraints on M

Spectral Mixture Analysis = (constrained) matrix factorization
= (constrained) blind source separation
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Problem formulation

Matrix factorization problem

Factorization Y ~ MA formulated as the minimization problem
min D(Y|MA) = Z D(yp/Ma,) = Z d (W,p| [Map]z)

M,A
p Dt

where d(alb) is a “distance measure”, e.g., d(alb) = [|la — b||*.
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Problem formulation

Matrix factorization problem

Factorization Y ~ MA formulated as the minimization problem
g}g D(Y|MA) = Z D(yp/Ma,) = Z d (W,p| [Map]z)
p j 24
where d(alb) is a “distance measure”, e.g., d(alb) = [|la — b||*.

An ill-posed problem!
If {M, A} is a solution, {MP,P~'A} is a solution®.

1For all P invertible matrix.
17
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Problem formulation

Matrix factorization problem

Factorization Y ~ MA formulated as the minimization problem
g}g D(Y|MA) = Z D(yp/Ma,) = Z d (W,p| [Map]z)
P p,t
where d(alb) is a “distance measure”, e.g., d(alb) = [|la — b||*.
An ill-posed problem!

If {M, A} is a solution, {MP,P~'A} is a solution®.

4

Additional constraints required!

1For all P invertible matrix.
17
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Problem formulation

Matrix factorization strategies
Y~MA &Y ~A"™™M"

1. Principal Component Analysis(PCA)

> Searching for orthogonal “principal components” (PCs) m,.,
» PCs = directions with maximal variance in the data,
> Generally used as a dimension reduction procedure.

18 /

39



MCMC algorithm for spectral unmixing
Problem formulation

Matrix factorization strategies
Y~MA &Y ~A"™™M"

1. Principal Component Analysis(PCA)

> Searching for orthogonal “principal components” (PCs) m,.,
» PCs = directions with maximal variance in the data,
> Generally used as a dimension reduction procedure.

2. Independent Component Analysis (ICA) (of Y7)

» Maximizing the statistical independence between the sources m,.,
> Several measures of independence = several algorithms.

18 / 39



MCMC algorithm for spectral unmixing
Problem formulation

Matrix factorization strategies
Y~MA &Y ~A"™™M"

1. Principal Component Analysis(PCA)

> Searching for orthogonal “principal components” (PCs) m,.,
» PCs = directions with maximal variance in the data,
> Generally used as a dimension reduction procedure.

2. Independent Component Analysis (ICA) (of Y7)

» Maximizing the statistical independence between the sources m,.,
> Several measures of independence = several algorithms.

3. Nonnegative Matrix Factorization (NMF)

» Searching for M et A with positive entries,
> Several measures of divergence d (-|-) = several algorithms.

18 / 39



MCMC algorithm for spectral unmixing
Problem formulation

Matrix factorization strategies
Y~MA &Y ~A"™™M"

[

. Principal Component Analysis(PCA)

> Searching for orthogonal “principal components” (PCs) m,.,
» PCs = directions with maximal variance in the data,
> Generally used as a dimension reduction procedure.

. Independent Component Analysis (ICA) (of Y7)

[\]

» Maximizing the statistical independence between the sources m,.,
> Several measures of independence = several algorithms.

3. Nonnegative Matrix Factorization (NMF)

» Searching for M et A with positive entries,
> Several measures of divergence d (-|-) = several algorithms.

4. (Fully Constrained) Spectral Mixture Analysis (SMA)

» Positivity constraints on m, = positive “sources”
» Positivity and sum-to-one constraints on a,
= mixing coefficients = proportions/concentrations/probabilities.
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Problem formulation

Geometrical formulation of SMA

SMA = looking for a simplex enclosing the data

A

Band b

Band a

19
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Problem formulation

Geometrical formulation of SMA

In practice: non-unique solution + trade-off noise vs. constraints...

20 /
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Outline

Hierarchical Bayesian modeling
Likelihood function
Prior distributions
Posterior distribution
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Hierarchical Bayesian modeling

Bayesian inference

Unknown parameters:

» A =[ajy,...,ap]: matrix of the P abundance vectors,
» M = [m,...,mg]: matrix of the spectral signatures,
» o2: noise variance,

Unknown parameter vector: 8 = {A7 M, 02}.

Bayes paradigm: f(0]Y) « f(Y]0)f(0) with:
— Likelihood: f(Y]0),

— Parameter prior distribution: f(6).

22
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lIiierarchical Bayesian modeling
Likelihood function

Hierarchical Bayesian modeling

Likelihood Function
The model and the Gaussian property of the noise vector n,, yield:

L
. 1\? ly, — Ma,|?
f(yP|M’ap7a2)_<27702> o [_ e |

where ||-|| denotes the standard £, norm: ||x||* = xTx.
Assuming prior independence between the n,’s (p =1,..., P):

P
f (Y|M,A,O’2) = H f (Yp|M,ap’<72) ’

p=1

23/
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Hierarchical Bayesian modeling

Endmember prior distribution

Chosen to ensure positivity constraints on m;, (I=1,...,L,r=1,...
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Endmember prior distribution

Chosen to ensure positivity constraints on m;, (I=1,...,L,r=1,...

Several choices:
» truncated/half Gaussian distribution my |02 ~ N (0, 0‘,%)
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Hierarchical Bayesian modeling

Endmember prior distribution
Chosen to ensure positivity constraints on m;, ({=1,...,L, r=1,..., R).
Several choices:

» truncated/half Gaussian distribution my |02 ~ N (0, 0‘,%)

> exponential distribution my ,|Ar ~ & (Ar)
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Hierarchical Bayesian modeling

Endmember prior distribution
Chosen to ensure positivity constraints on m;, ({=1,...,L, r=1,..., R).
Several choices:

» truncated/half Gaussian distribution my |02 ~ N (0, 0‘,%)

> exponential distribution my ,|Ar ~ & (Ar)

» Gamma distribution m; ,|ar, Br ~ G (ar, Br)
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Prior distributions

Hierarchical Bayesian modeling

Endmember prior distribution
Gamma distribution with shape parameter «, and (inverse) scale
parameter [S;:

Brr

[ (murlow, Br) = mmﬁ?_l exp (—Brmi,r) 1+ (Mu,r)

25
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Hierarchical Bayesian modeling

Endmember prior distribution
Gamma distribution with shape parameter «, and (inverse) scale
parameter [S;:

§ (milar, Br) = o mis ™ exp (<Brmu) Lus ()

Choice of the hyperparameters?
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Hierarchical Bayesian modeling

Endmember prior distribution
Gamma distribution with shape parameter «, and (inverse) scale
parameter [S;:

BT
I (o)

f (ml,'r|ar: 67") =

mﬁ;_l exp (—Brmi,r) 1+ (Mu,r)

Choice of the hyperparameters? — hierarchical Bayesian model...

Endmember hyperparameter prior
Exponential prior for o,
ar ~ EAa,)

Conjugate gamma prior for G,

ﬁr ~ g(aﬁr ) ﬂﬂr)

where A, ag, and (33, chosen to obtain vague (i.e., flat) hyperpriors.

25
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Hierarchical Bayesian modeling

Abundance Priors
With the positivity and additivity constraints on ay:

ap,1

R—1
cp . .
a, = with cp = : and apr=1-— Qp,r-
p { ap R ] P : p,R ; P,
ap,R—1 B
Uniform priors chosen for ¢, (p =1,..., P) on the simplex S:

S= {CP; ”Cp”l <1landc, = 0}'

Variance Prior
Jeffreys’ prior:

F(o%) ~ —

26 / 39
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Eierarchical Bayesian modeling
Posterior distribution

Hierarchical Bayesian modeling

Posterior distribution of 8 = {M, C, ¢’ a}

f(M,C, 0% alY) «
F(YIM,C) f(C) f Mle, 8) f () £ (B) f (o)

with @ = [oa,...,ar] and 8 = [B1, ..., OR].

— A too complex posterior distribution...
Generation of samples according to f (I\/L C, o2, a‘Y)
using MCMC methods.

27
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Gibbs sampler

Outline
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Gibbs Sampler

Sampling from truncated Gaussian distributions f (cp |M, o2, yp)

cp ‘M, 02,y,, ~ Ns (vp, Ep)

Sampling from f (ar|C, M, oz,BT,Y) using Metropolis-Hastings steps

7 (arlC. M, 0%, 5,.Y) H [Fﬁ(;) mr | exp (“Aapar) Tpt ()

Sampling from Gamma distributions f (Br|mr7 o2, o, Y)

BrIM, 0%, 0, Y ~ G (1+ Loy + ag,, [m.|l, + Bs,)
Sampling from f (ml,T|C, o2, ar, Br, Y) using Metropolis-Hastings steps

(ml,r - Hl,r)2

252 - 57‘mlm 1R+ (ml,r)
Ir

f (ml,Tlcva27O‘T7 /ET’Y) x ml,rarilexp |:_

Sampling from an inverse-Gamma distribution f (¢|C,T,Y)

rrL 1 &
oM, C,Y ~ 76 | — 72 lyp — May,||?

20
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Experiments: synthetic data
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Simulation Results: Synthetic Data

Simulation parameters
» 200 x 500 pixels,
» R = 10 endmembers (H20O and COx ice spectra + mineral spectra
from USGS library),
» L =128 (OMEGA C Channel),

» mixing coefficients drawn uniformly on the admissible set (simplex)

31 /
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Simulation Results: Synthetic Data

Simulation parameters
> 200 x 500 pixels,

» R = 10 endmembers (H20O and COx ice spectra + mineral spectra
from USGS library),

» L =128 (OMEGA C Channel),
» mixing coefficients drawn uniformly on the admissible set (simplex)

COMELATON - 03057 | COMELATON = DSS477  COMRELATON - 0009853 COWGELATON - 0930BY  CORMELAION = 0568133
!

o1 o1 / 02f az| aa

e s St 1 S e © s Sl 2 s shn’s
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Experiments: real images

Simulation results: real data
[Dobigeon et al, IEEE Trans. SP, 2009]

(remote sensing) AVIRIS data
> Image: 50 x 50 pixels (Moffett field), L = 224 bands,

> 3 materials: vegetation, water, soil.
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—Experiments: real images

Simulation results: real data
[Dobigeon et al, IEEE Trans. SP, 2009]

(remote sensing) AVIRIS data
» Image: 50 x 50 pixels (Moffett field), L = 224 bands,

» 3 materials: vegetation, water, soil.
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Experiments: real images

Simulation results: real data
[Schmidt et al., IEEE Trans. GRS, 2010]

OMEGA data

» L = 184 spectral bands, ~ 300 x 400 pixels,
» 3 materials: CO2, dust, H20.
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Experiments: real images

Simulation results: real data
[Schmidt et al., IEEE Trans. GRS, 2010]

OMEGA data

» L = 184 spectral bands, ~ 300 x 400 pixels,
» 3 materials: CO2, dust, H20.

wavelengths wavelengths

source 1 source 3
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Conclusion

Summary
» Unsupervised estimation of endmembers and abundances,

» Bayesian model ensuring
» the positivity and additivity constraints of the abundances,
> the positivity constraints of the endmember spectra,

P Generation of samples distributed according to the posterior distribution thanks
to (hybrid) Gibbs sampler,
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Conclusion

Summary

>

>

Unsupervised estimation of endmembers and abundances,

Bayesian model ensuring

» the positivity and additivity constraints of the abundances,
> the positivity constraints of the endmember spectra,

Generation of samples distributed according to the posterior distribution thanks

to (hybrid) Gibbs sampler,

Confidence intervals for the parameter estimates.
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Conclusion

Summary
» Unsupervised estimation of endmembers and abundances,

P> Bayesian model ensuring

» the positivity and additivity constraints of the abundances,
> the positivity constraints of the endmember spectra,

» Generation of samples distributed according to the posterior distribution thanks
to (hybrid) Gibbs sampler,

» Confidence intervals for the parameter estimates.

Some extensions
P exploiting spatial correlation
ex: Markovian models?

P estimating the number of components (model order selection problem)
ex: algorithms with jumpsg, “sparse” methods?

» nonlinear models (to handle multiple scattering effects or intimate mixtures)
ex: bilinear models®

2Echcs et al. IEEE Trans. GRS, 2011.
3Dobigeon et al. IEEE Trans. SP, 2008.
4Iordache et al., IEEE Trans. GRS, 2011.
5Halimi et al. IEEE Trans. GRS, 2011.
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