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Introduction

Hyperspectral Imagery

Hyperspectral Images
I same scene observed at different wavelengths,

I pixel represented by a vector of hundreds of measurements.

Hyperspectral Cube
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Introduction

Spectral Mixture Analysis

Linear Mixing Model (LMM): yp =
∑R
r=1 mrap,r + np

Reference: IEEE Signal Proc. Magazine, Jan. 2002.
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Introduction

Spectral Mixture Analysis

Non-linear Mixing Model: yp = g ({ar,mr}r) + np

Reference: IEEE Signal Proc. Magazine, Jan. 2002.
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Introduction

Spectral Mixture Analysis

Linear Mixing Model (LMM): yp =
∑R
r=1 mrap,r + np

I L = 825
(0.4µm→ 2.5µm),

I R = 3:
I green grass

(solid line),
I galvanized steel metal

(dashed line),
I bare red brick

(dotted line),

I ap = [0.3, 0.6, 0.1]T ,
I SNR ≈ 20dB.

Problem
Estimation of ap under positivity and additivity constraints

and m1, . . . ,mR under positivity constraints.
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Introduction

Spectral unmixing steps

Preprocessing
Huge data volume ⇒ dimensional reduction algorithms

I Principal Component Analysis (PCA): projection into a lower
dimensional space spanned by directions of high magnitudes,

I Maximum Noise Fraction (MNF): projection maximizing the SNR,

I ...

Remark: optional step for some algorithms.

Estimation

(1) Endmember extraction step (i.e., estimation of the spectral
components),

(2) inversion (abundance estimation),

(1+2) joint estimation of the endmembers and abundances.
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Introduction

Endmember extraction (1)
Convex geometry

9 / 39



MCMC algorithm for spectral unmixing

Introduction

Endmember extraction (1)
Convex geometry

Searching for purest pixels (≈ simplex of maximum volum inscribed
in the data)

(a) Pixel Purity Index (PPI) (b) N-FINDR

or successive projections onto orthogonal subspaces (VCA, ORASIS).

Searching for simplex of minimum volum inscribing the data
“Minimum Volume Transform” (MVT) algorithms and variants.
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Introduction

Inversion (2)
Constrained inverse problem

Constrained optimization

Minimizing J(a) = ‖y −Ma‖2 s.t.
{
ar ≥ 0, ∀r = 1, . . . , R∑R

r=1 ar = 1

with M = [m1, . . . ,mR].

I Fully Constrained Least Squares (FCLS) [Heinz et al., 2001],
I Scaled Gradient Methods (SGM) [Theys et al., 2009],
I Primal-dual algorithms [Chouzenoux et al., 2011],
I ...
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Introduction

Spectral Mixture Analysis

Linear Mixing Model (LMM): yp =
∑R
r=1 mrap,r + np

I Supervised case: m1, . . . ,mR are known,

I Semi-supervised case: m1, . . . ,mR are partially unknown (R
unknown, the mr belong to a fixed spectral library),

I Unsupervised case: m1, . . . ,mR are unknown.
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Problem formulation

Observation model

For a given pixel p observed in L spectral bands:

yp =
∑R
r=1 mrap,r + np

= Map + np

Now, consider P pixels:

Y = MA + N

where
Y = [y1, . . . ,yP ] , M = [m1, . . . ,mR] ,
A = [a1, . . . ,aP ] , N = [n1, . . . ,nP ] .

Factorize Y ≈MA under positivity and additivity constraints on A
and positivity constraints on M

Spectral Mixture Analysis = (constrained) matrix factorization

Spectral Mixture Analysis

= (constrained) blind source separation
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Problem formulation

Matrix factorization problem

Factorization Y ≈MA formulated as the minimization problem

min
M,A

D(Y|MA) =
∑
p

D(yp|Map) =
∑
p,`

d
(
y`,p| [Map]`

)
where d(a|b) is a “distance measure”, e.g., d(a|b) = ‖a− b‖2.

An ill-posed problem!
If {M,A} is a solution,

{
MP,P−1A

}
is a solution1.

⇓
Additional constraints required!

1For all P invertible matrix.
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Problem formulation

Matrix factorization strategies
Y ≈MA ⇔ YT ≈ ATMT

1. Principal Component Analysis(PCA)

I Searching for orthogonal “principal components” (PCs) mr,
I PCs = directions with maximal variance in the data,
I Generally used as a dimension reduction procedure.

2. Independent Component Analysis (ICA) (of YT )

I Maximizing the statistical independence between the sources mr,
I Several measures of independence ⇒ several algorithms.

3. Nonnegative Matrix Factorization (NMF)

I Searching for M et A with positive entries,
I Several measures of divergence d (·|·) ⇒ several algorithms.

4. (Fully Constrained) Spectral Mixture Analysis (SMA)

I Positivity constraints on mr ⇒ positive “sources”
I Positivity and sum-to-one constraints on ap
⇒ mixing coefficients = proportions/concentrations/probabilities.
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Problem formulation

Geometrical formulation of SMA

SMA = looking for a simplex enclosing the data
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Problem formulation

Geometrical formulation of SMA

In practice: non-unique solution + trade-off noise vs. constraints...
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Hierarchical Bayesian modeling

Bayesian inference

Unknown parameters:
I A = [a1, . . . ,aP ]: matrix of the P abundance vectors,
I M = [m1, . . . ,mR]: matrix of the spectral signatures,
I σ2: noise variance,

Unknown parameter vector: θ =
{
A,M, σ2

}
.

Bayes paradigm: f(θ|Y) ∝ f(Y|θ)f(θ) with:

→ Likelihood: f(Y|θ),
→ Parameter prior distribution: f(θ).
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Hierarchical Bayesian modeling

Likelihood function

Hierarchical Bayesian modeling

Likelihood Function
The model and the Gaussian property of the noise vector np yield:

f
(
yp
∣∣M,ap, σ2

)
=
(

1
2πσ2

)L
2

exp

[
−‖yp −Map‖2

2σ2

]
,

where ‖·‖ denotes the standard `2 norm: ‖x‖2 = xTx.
Assuming prior independence between the np’s (p = 1, . . . , P ):

f
(
Y
∣∣M,A, σ2

)
=

P∏
p=1

f
(
yp
∣∣M,ap, σ2

)
,
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Hierarchical Bayesian modeling

Prior distributions

Hierarchical Bayesian modeling

Endmember prior distribution
Chosen to ensure positivity constraints on ml,r (l = 1, . . . , L, r = 1, . . . , R).

Several choices:

I truncated/half Gaussian distribution ml,r|σ2
r ∼ N+

(
0, σ2

r

)
I exponential distribution ml,r|λr ∼ E (λr)

I Gamma distribution ml,r|αr, βr ∼ G (αr, βr)
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Hierarchical Bayesian modeling

Prior distributions

Hierarchical Bayesian modeling

Endmember prior distribution
Gamma distribution with shape parameter αr and (inverse) scale
parameter βr:

f (ml,r|αr, βr) =
βαrr

Γ (αr)
mαr−1
l,r exp (−βrml,r) 1R+ (ml,r)

Choice of the hyperparameters? → hierarchical Bayesian model...

Endmember hyperparameter prior
Exponential prior for αr

αr ∼ E(λαr )

Conjugate gamma prior for βr

βr ∼ G(αβr , ββr )

where λαr , αβr and ββr chosen to obtain vague (i.e., flat) hyperpriors.
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Hierarchical Bayesian modeling

Prior distributions

Hierarchical Bayesian modeling

Abundance Priors
With the positivity and additivity constraints on ap:

ap =

[
cp
ap,R

]
with cp =

 ap,1
...

ap,R−1

 and ap,R = 1−
R−1∑
r=1

ap,r.

Uniform priors chosen for cp (p = 1, . . . , P ) on the simplex S:

S =
{
cp; ‖cp‖1 ≤ 1 and cp � 0

}
.

Variance Prior
Jeffreys’ prior:

f
(
σ2) ∼ 1

σ2
.
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Hierarchical Bayesian modeling

Posterior distribution

Hierarchical Bayesian modeling

Posterior distribution of θ =
{
M,C, σ2,α

}
f
(
M,C, σ2,α|Y

)
∝

f (Y|M,C) f (C) f (M|α,β) f (α) f (β) f
(
σ2)

with α = [α1, . . . , αR] and β = [β1, . . . , βR].

→ A too complex posterior distribution...
Generation of samples according to f

(
M,C, σ2,α

∣∣Y)
using MCMC methods.
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Gibbs sampler

Gibbs Sampler

Sampling from truncated Gaussian distributions f
(
cp
∣∣M, σ2,yp

)
cp

∣∣∣M, σ
2
,yp ∼ NS (υp,Σp)

Sampling from f
(
αr|C,M, σ2, βr,Y

)
using Metropolis-Hastings steps

f
(
αr|C,M, σ

2
, βr,Y

)
∝

L∏
l

[
βαrr

Γ (αr)
m
αr−1
l,r

]
exp (−λαrαr) 1R+ (αr)

Sampling from Gamma distributions f
(
βr|mr, σ

2, αr,Y
)

βr|M, σ
2
,α,Y ∼ G

(
1 + Lαr + αβr , ‖mr‖1 + ββr

)
Sampling from f

(
ml,r|C, σ2, αr, βr,Y

)
using Metropolis-Hastings steps

f
(
ml,r|C, σ2

, αr, βr,Y
)
∝ ml,rαr−1

exp

[
−

(ml,r − µl,r)2

2δ2l,r
− βrml,r

]
1R+ (ml,r)

Sampling from an inverse-Gamma distribution f
(
σ2|C,T,Y

)
σ

2|M,C,Y ∼ IG

PL
2
,

1

2

P∑
p=1

‖yp −Map‖2

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Experiments: synthetic data

Simulation Results: Synthetic Data

Simulation parameters

I 200× 500 pixels,

I R = 10 endmembers (H2O and CO2 ice spectra + mineral spectra
from USGS library),

I L = 128 (OMEGA C Channel),

I mixing coefficients drawn uniformly on the admissible set (simplex)
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Experiments: real images
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Experiments: real images

Simulation results: real data
[Dobigeon et al, IEEE Trans. SP, 2009]

(remote sensing) AVIRIS data

I Image: 50× 50 pixels (Moffett field), L = 224 bands,

I 3 materials: vegetation, water, soil.
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Experiments: real images

Simulation results: real data
[Schmidt et al., IEEE Trans. GRS, 2010]

OMEGA data

I L = 184 spectral bands, ≈ 300× 400 pixels,

I 3 materials: CO2, dust, H20.
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Conclusion

Summary

I Unsupervised estimation of endmembers and abundances,

I Bayesian model ensuring
I the positivity and additivity constraints of the abundances,
I the positivity constraints of the endmember spectra,

I Generation of samples distributed according to the posterior distribution thanks
to (hybrid) Gibbs sampler,

I Confidence intervals for the parameter estimates.

Some extensions

I exploiting spatial correlation
ex: Markovian models2

I estimating the number of components (model order selection problem)
ex: algorithms with jumps3, “sparse” methods4

I nonlinear models (to handle multiple scattering effects or intimate mixtures)
ex: bilinear models5

2Eches et al. IEEE Trans. GRS, 2011.
3Dobigeon et al. IEEE Trans. SP, 2008.
4Iordache et al., IEEE Trans. GRS, 2011.
5Halimi et al. IEEE Trans. GRS, 2011.
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http://www.enseeiht.fr/~dobigeon

Atelier Astrostatistique, 8-9 décembre 2011
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