Dispersed information and nonlinear inference in Bayesian cosmology

Benjamin Wandelt

Institut d'Astrophysique de Paris (IAP) Université Pierre et Marie Curie (Paris 06), CNRS Sorbonne Universités

wandelt@iap.fr

Cosmostatistics: the Big Picture

Millennium Run

You!

Primordial perturbations as seen in the Cosmic Microwave Background anisotropies (WMAP) Darl

Dark matter distribution today (simulated)

Goals of cosmostatistics

- The cosmological agenda for the coming decade is to
 - Learn about the cosmic beginning
 - Understand the cosmic constituents, in particular Dark Matter and Dark Energy
 - Understand cosmological evolution from cosmic seeds to current observations
- Any given observable (e.g. CMB, galaxy survey) is informative (often weakly) about all of these goals in some way
- Decisive inference for each of these goals requires *joint inference* from several complementary data sets. This challenges the status quo.

Example

- Cosmic Constituents: Dark Energy
- Goal: infer D.E. Parameters
- Use
 - Two-point correlations P(k,z), BAO
 - Lensing
 - Halo abundances
 - Void properties
 - Primary CMB, ISW and secondaries
 - Supernovae
- Joint analysis provides powerful constraints and propagates the information between all parts of the analysis
- Joint analysis also avoids using data twice
 - P(k,z), BAO, halos, voids lensing all probe the same galaxies... traditional approaches do separate analyses and combine after the fact as if independent!

Issues in Cosmostatistics

- Awash in data, but fundamental limits to information:
 - On large scales: causality
 - On small scales: non-linearity
- ⇒Large scales require careful statistical treatment to extract precious information from a relatively small number of modes
- \Rightarrow Linear methods are OK on intermediate scales
- ⇒Large potential gains in information when pushing to smaller, mildly non-linear scales since number of modes grows as 1/(length)³

Beyond the linear and the Gaussian

- Even for Gaussian fields non-Gaussian statistics arise for covariance estimation (power spectrum inference, parameter inference)
- 21st century precision cosmology deals with nonlinear problems:
 - Gravitational non-linearity! Lensing, galaxy surveys
 - Primordial non-Gaussianity?
 - Non-linearities and non-Gaussianity can also arise in interesting ways when dealing with data imperfections and systematics

Examples of Bayesian solutions to nonlinear problems in Cosmostatistics

- Global Bayesian inference from photometric redshift surveys
- Bayesian lens reconstruction from CMB data
- Precision cosmography with Cosmic Voids from spectroscopic surveys

The majority of ongoing and future surveys will resolve distance poorly (photometry vs spectroscopy)

DARK ENERGY SURVEY

Your massive survey here

Redshifts based on photometry wipe out 3D structure on ~100Mpc/h scales

If we believe that the universe is homogenous and isotropic we can add this as prior information

Bayesian joint/global reconstruction of cosmic density field and galaxy positions from a photo-z survey

Assumptions:

- Correlated, isotropic, log-normal model for the density field
- Galaxies are modeled as a Poisson sample from the density
- Inputs:
 - >20 million photo-z pdfs
 - P(k) for a cosmological model (can also be jointly inferred)
- Technique:
 - Block Metropolis-Gibbs sampling
 - Hamiltonian sampler for density field (1.6x10⁷ parameters)
- Outputs:
 - samples from the density field
 - photo-z posterior pdfs
- Note that our simulations are from cosmological density fields they violate the log-normal prior

Jasche and Wandelt arxiv: 1106.2757

The reconstruction in action

Jasche and Wandelt, arxiv:1106.2757

Galaxies random walk through the (dynamically updated) density reconstructions

Jasche and Wandelt, arxiv:1106.2757

Inferred redshift locations are much better than photo-zs in high density regions

Jasche and Wandelt, arxiv:1106.2757

Radial location (redshift) posteriors compared to input from photo-z estimator

Full sampled representation of the posterior

Posterior mean (column 1) and variance (column 2) of reconstructed density field +

mask (column 3)

Jasche and Wandelt, arxiv:1106.2757

High density regions are super-resolved (crosscorrelation between input and posterior mean density field for different density thresholds)

Comments on Bayesian large scale structure analysis

- Robust to prior misspecification: the entire simulation study used an full n-body sim while the model assumes a Poisson-Lognormal model
- Our approach is completely independent of and complementary to the means by which the photometric redshift is derived.
- Each tracer object can have its own photo-z PDF
- A decisive gain is achieved by combining a wellmotivated physical prior with data where information is dispersed over millions of "weak" measurements

BAYESIAN LENS RECONSTRUCTION FROM CMB DATA

Lavaux&Wandelt, in prep.

Why Bayesian lens reconstruction?

- Trustworthy error propagation
- "Principled" rather than "ad hoc" analysis
- Optimal use of information-the standard quadratic estimator is known to be lossy
- Interesting by-product: posterior statistics of unlensed, primary CMB
- Spin-off: a fast and highly accuracy interpolation method on the sphere.

Basics and first attempt

- Lensing model $d = L(\phi)s + n$
- Resulting posterior

$$P(s,d|S,N,\phi) \propto \exp\left(-\frac{1}{2}\mathcal{L}(s,d,S,N,\phi)\right)$$
$$\mathcal{L}(s,d,S,N,\phi) = \alpha s^{\dagger}TS^{-1}T^{-1}s + (d - L(\phi)s)^{\dagger}N^{-1}(d - L(\phi)s)$$

- Could expand to linear term and Gibbs sample. Tried this (with Antony Lewis) about 8 years ago
- Data strongly correlates primary CMB and lensing potential. Gibbs sampling moves only infinitesimally.
- Fail.

Why not solve the exact problem?

• Exact, marginal posterior is

$$P(\phi|S, N, d, C^{\phi}) = \frac{1}{\mathcal{N}'(S, N, d, C^{\phi})} P(d|S, N, \phi) P(\phi|C^{\phi})$$
$$P(d|S, N, \phi) = \left(\det 2\pi \tilde{S}(S, N, \phi)\right)^{-1/2} \exp\left(-\frac{1}{2}d^{\dagger} \tilde{S}^{-1}(S, N, \phi)d\right)$$
$$\tilde{S}(S, N, \phi) = N + \alpha L(\phi)TST^{-1}L^{\dagger}(\phi).$$

- N_{pix}³ operations to evaluate normalization
- Impossible to evaluate. No Metropolis-Hastings, no Hamiltonian Sampling, no importance sampling etc.
- Fail.

Exchange sampling (Murray 2007)

... solves the problem of not being able to evaluate the ٠ normalization for a posterior pdf of the form

$p(\theta) \frac{f(y;\theta)}{\mathcal{Z}(\theta)}$

Augment this problem with another parameter set ϑ' and another (fake) data set d'. New joint posterior is

$$p(y,\theta,x,\theta') = p(\theta) \frac{f(y;\theta)}{\mathcal{Z}(\theta)} q(\theta' \leftarrow \theta; y) \frac{f(x;\theta')}{\mathcal{Z}(\theta')}$$

- Marginalization gives the old posterior Sample by alternating two transitions: Note cancellation of •
 - Sample $(\vartheta', d' | \vartheta, d)$ this is a Gibbs sample.
 - Z(ϑ)! - Propose exchange move $\vartheta' < -> \vartheta$. Accept with acceptance ratio

$$\frac{p(\theta') q(\theta \leftarrow \theta'; y) f(y; \theta') f(x; \theta)}{p(\theta) q(\theta' \leftarrow \theta; y) f(y; \theta) f(x; \theta)} f(x; \theta')$$

Details

- L(φ) implemented using FLINTS (Lavaux &Wandelt 2010) for fast lensing and transpose lensing
- Initialize using quadratic estimator

$$\begin{split} \phi'_{\ell,m} &= \alpha_{\ell} \phi_{\ell,m} + \gamma_{\ell} (\delta \phi_{\ell,m} + \epsilon_{\ell,m}) \quad \alpha_{\ell}^2 + r_{\ell}^2 \gamma_{\ell}^2 = 1 \\ - \text{ Drift-diffusion proposal based on re-weighted quadratic estimator} \\ \langle |\phi_{\ell,m}|^2 \rangle &= C_{\ell}^{\phi} \quad \langle |\delta \phi_{\ell,m}|^2 \rangle = r_{\ell} C_{\ell}^{\phi} \qquad r_{\ell} = \min\left(1, \frac{E_{\ell}}{C_{\ell}^{\phi}}\right) \\ \mathcal{Q}(\phi',\phi) &= \frac{1}{2} \sum_{\ell=2}^{+\ell_{\max,\phi}} \frac{1}{\gamma_{\ell}^2 E_{\ell}} \sum_{m=-\ell}^{+\ell} \left|\phi'_{\ell,m} - \alpha_{\ell} \phi_{\ell,m}\right|^2 \end{split}$$

Drift term ɛis quadratic estimator on lensing subtracted data

$$\tilde{d} = s_0 + (d - L(\phi)s_0)$$

nside=512, lmax=256

X-Correlation between input and reconstructed lensing potential

Lensed CMB input signal

Input lensing potential

Difference between input and posterior mean lensing potential

Posterior std dev. of lensing potential

11 décembre 2011

Wandelt & Lavaux

Input lensing signal

Difference between 1 reconstructed unlensed CMB and the true CMB

Conclusions

- First implementation of fully Bayesian lensing analysis applied to idealized simulation
- Doubly hard sampling problem
- Interesting application of the exchange algorithm

PRECISION COSMOGRAPHY WITH STACKED COSMIC VOIDS

... or "voids as cosmic stopwatches,"

... or "cosmic voids as standard spheres"

... or "dark energy phenomenology from nothing"

Lavaux & Wandelt, arxiv:1110.0345)

Dark energy phenomenology

- Through GR, dark energy has a direct impact on the expansion history of the Universe:
 - Supernovae measure the way standard candles dim with expansion (luminosity distance, indirect)
 - The imprint primordial gas leaves on the dark matter gives a standard ruler whose length we can measure in the distant Universe (large scale, few modes).
 - If we had cosmic clocks we could directly find the relationship between expansion and cosmic time (Jimenez and Loeb 2002) (but need to understand galaxy spectra)

Cosmic stopwatches

- Good clocks (with long term stability) are hard to find
- But if we had standard spheres we could directly work out the cosmic expansion history by dividing their angular extent by their temporal extent
- This is a differential measurement
- Standard spheres are like cosmic stopwatches
- This is the Alcock-Paczynsky technique
- First realized for voids by Ryden in 1995!

Cosmography with voids

Cosmography with voids

(Lavaux & Wandelt, arxiv:1110.0345)

Void definition

- Need a good definition of voids spatial statistics
 - Modified ZOBOV scheme (Neyrinck 2008)
 - Uses Voronoi tesselation to find catchment basins associated with density minima
 - Does not assume a hard-coded void shape
 - Organizes voids in a tree-structure

(Lavaux & Wandelt, arxiv:1110.0345)

(Lavaux & Wandelt, arxiv:1110.0345)

Practical issues

- Voids are *not* spheres they have complicated shapes
 - Solution: void stacking
 - Take particles in all detected void regions in a redshift shell, co-center and merge them
 - Voids are spherical *on average* (in physical coordinates).
- Tracers (galaxies) move this distorts the voids systematically in redshift space
 - Solution: model coherent motions in void.
 - In fact, the effect largely produces a constant bias that can be corrected.

Void stacking

Statistical model for shape inference

- Void walls have structure
 - Some residual clumping remains after stacking
 - Solution: choose pixel size large enough (~2 h⁻¹
 Mpc) that clumps only contribute to one pixel.
 - This allows treating clumping noise as independent in pixel space.
 - Bayesian MCMC procedure for fitting an ellipsoidal cubic density profile, including a clumping noise parameter.

Coarser pixelization de-correlates clumping error

(Lavaux & Wandelt, arxiv:1110.0345)

Simple de-biasing gives good H(z) estimate even with peculiar velocities

(Lavaux & Wandelt, arxiv:1110.0345)

Dark energy constraint forecast

data

alone yield double the combined FoM.

Next steps

- Each step (void identification, stacking/averaging, shape inference) involves choices and parameters. We have only scratched the surface.
- More detailed peculiar velocity modeling will yield additional signal to noise
- Need more realistic simulations including more real-world systematics:
 - Biased tracers of the density
 - Complicated masks
 - But since this is a purely geometrical measurement this signal is very robust
- Further, complementary constraints could come from additional inferences about the growth of cosmic structure from the intrinsic shapes of voids – which this method ignores. (e.g., Park & Lee 2007; Biswas et al. 2010; Lavaux & Wandelt (2010))

Conclusions

- Non-linear, principled cosmological inference with ~10⁷ parameters is becoming feasible
- Global analysis of survey data can add tremendous value to photo-z surveys
- New sampling techniques allow progress for doubly hard inference problems, like lensing
- "Stacked Voids" are a new, purely geometrical dark energy observable. First estimates suggest tremendous additional potential for constraints on Dark Energy
- Opens up many interesting statistics questions
 - Spatial statistics
 - Robustness
 - Optimal survey design for the AP test with stacked voids

APPENDICES

Survey forecasts

Survey	Fraction	Luminosity	Limiting	$z_{ m max}$	Number
	of sky	function	magnitude		of galaxies
SDSS-DR7	24%	$\phi_* = 1.46 10^{-2} h^3 \mathrm{Mpc}^{-3}$	r = 18	0.3	1.710^{6}
		$M_* = -20.83$			
		$\alpha = -1.20$			
		(SDSS Collaboration & Blanton 2000)			
SDSS-DR7 (LRG)	24%	$\phi_* = 2.63 10^{-5} h^3 \mathrm{Mpc}^{-3}$	r = 20	0.45	10 ⁵
		$M_* = -19.42$			
		$\alpha = 3.90$			
		(Cool et al. 2008)			
BOSS	24%	same as the SDSS	r = 20	0.7	$1.5 \ 10^{6}$
EUCLID	36%	$\phi_* = 1.16 10^{-2} h^3 \mathrm{Mpc}^{-3}$	H = 24	1.5	$\sim 1.610^8$
		$M_* = -23.39$			
		$\alpha = -1.09$			
		(Kochanek et al. 2001; Jones et al. 2006)			

Method	Data	FoM	
BAO	BOSS	86	
Voids	SDSS+BOSS LRG	63	
BAO+Voids	SDSS+BOSS	91	
Voids	EUCLID	${\sim}5~500$	
BAO	EUCLID	185	
BAO+Voids	EUCLID	${\sim}5~500$	

(Lavaux & Wandelt, arxiv:1110.0345)