Dispersed information and non-
linear inference in Bayesian
cosmology

Benjamin Wandelt

Institut d’Astrophysique de Paris (I1AP)
Université Pierre et Marie Curie (Paris 06), CNRS
Sorbonne Universités

wandelt@iap.fr



Cosmostatistics: the Big Picture

Primordial perturbations as seen
in the Cosmic Microwave Background
anisotropies (WMAP) Dark matter

distribution

today
(simulated)

Millennium Run

10.077.696.000’ particles. » |



Goals of cosmostatistics

 The cosmological agenda for the coming decade is to
— Learn about the cosmic beginning

— Understand the cosmic constituents, in particular Dark
Matter and Dark Energy

— Understand cosmological evolution from cosmic seeds to
current observations

* Any given observable (e.g. CMB, galaxy survey) is
informative (often weakly) about all of these goals in
some way

* Decisive inference for each of these goals requires joint
inference from several complementary data sets. This
challenges the status quo.



Example

Cosmic Constituents: Dark Energy
Goal: infer D.E. Parameters

Use
— Two-point correlations P(k,z), BAO
— Lensing
— Halo abundances
— Void properties
— Primary CMB, ISW and secondaries
— Supernovae
Joint analysis provides powerful constraints and propagates the
information between all parts of the analysis
Joint analysis also avoids using data twice

— P(k,z), BAO, halos, voids lensing all probe the same galaxies...
traditional approaches do separate analyses and combine after the
fact as if independent!



Issues In Cosmostatistics

 Awash in data, but fundamental limits to
information:

— On large scales: causality
— On small scales: non-linearity
=>|arge scales require careful statistical treatment

to extract precious information from a relatively
small number of modes

=Linear methods are OK on intermediate scales

=>Large potential gains in information when
pushing to smaller, mildly non-linear scales since
number of modes grows as 1/(length)3



Beyond the linear and the Gaussian

* Even for Gaussian fields non-Gaussian statistics
arise for covariance estimation (power spectrum
inference, parameter inference)

e 215t century precision cosmology deals with non-
linear problems:
— Gravitational non-linearity! Lensing, galaxy surveys
— Primordial non-Gaussianity?

— Non-linearities and non-Gaussianity can also arise in
interesting ways when dealing with data
imperfections and systematics



Examples of Bayesian solutions to non-
linear problems in Cosmostatistics

* Global Bayesian inference from photometric
redshift surveys

e Bayesian lens reconstruction from CMB data

* Precision cosmography with Cosmic Voids
from spectroscopic surveys



The majority of ongoing and future
surveys will resolve distance poorly
(photometry vs spectroscopy)
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Redshifts based on photometry wipe
out 3D structure on ~100Mpc/h scales
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Bayesian joint/global reconstruction of
cosmic density field and galaxy positions
from a photo-z survey

Assumptions:

* Correlated, isotropic, log-normal model for the density field
* Galaxies are modeled as a Poisson sample from the density
Inputs:
— >20 million photo-z pdfs
— P(k) for a cosmological model (can also be jointly inferred)
 Technique:
— Block Metropolis-Gibbs sampling
— Hamiltonian sampler for density field (1.6x107 parameters)
* Qutputs:
— samples from the density field
— photo-z posterior pdfs

* Note that our simulations are from cosmological density fields —
they violate the log-normal prior

Jasche and Wandelt arxiv: 1106.2757



The reconstruction in action
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Galaxies random walk through the (dynamically
updated) density reconstructions

+3.00
+2.50

+2.00

+1.50

+1.00

+0.50
+0.00

0.0 0.2 0.4 0.6 0.8
n [1000 samples]

Jasche and Wandelt, arxiv:1106.2757

In(2 +6)



Inferred redshift locations are much better
than photo-zs in high density regions

T T T +0.12
140
+0.10
120 RE —
-z only
100 +0.08
E
5
§ 20 <
<& t 44+0.06 g
60 &
t 4 +0.04
10
20 +0.02
0 1 1 1 1 1 1 +0.00
-0.04 -0.02 0.00 0.02 0.04 -0.04 -0.02 0.00 0.02 0.04
Az Az

Jasche and Wandelt, arxiv:1106.2757



Radial location (redshift) posteriors

compared to input from photo-z estimator
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Full sampled
representation of
the posterior

Posterior

mean (column 1)
and variance
(column 2) of
reconstructed
density field

+

mask (column 3)
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High density regions are super-resolved (cross-
correlation between input and posterior mean
density field for different density thresholds)
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Comments on Bayesian large scale
structure analysis

Robust to prior misspecification: the entire
simulation study used an full n-body sim while
the model assumes a Poisson-Lognormal model

Our approach is completely independent of and
complementary to the means by which the
photometric redshift is derived.

Each tracer object can have its own photo-z PDF

A decisive gain is achieved by combining a well-
motivated physical prior with data where
information is dispersed over millions of “weak”
measurements



Millennium Run
10.077.696.000"particles » |

BAYESIAN LENS RECONSTRUCTION
FROM CMB DATA

Lavaux&Wandelt, in prep.



Why Bayesian lens reconstruction?

* Trustworthy error propagation
* “Principled” rather than “ad hoc” analysis

* Optimal use of information-the standard
guadratic estimator is known to be lossy

* |Interesting by-product: posterior statistics of
unlensed, primary CMB

* Spin-off: a fast and highly accuracy
interpolation method on the sphere.



Basics and first attempt

Lensing model d=L(o)s +n
Resulting posterior
| ] 1 ] .
P(s,d|S, N, ¢) x exp (—;E(s. d,S, N, (p))

v

L(s,d,S,N,¢)=as' TS T et
(d— L(¢)s)IN~Y(d — L(¢)s)
Could expand to linear term and Gibbs sample. Tried

this (with Antony Lewis) about 8 years ago

Data strongly correlates primary CMB and lensing
potential. Gibbs sampling moves only infinitesimally.

Fail.



Why not solve the exact problem?

* Exact, marginal posterior is

_ y 1
P(¢6|S,N,d,C?) =

- —P(d|S,N, ¢)P(¢
NS N.a.coy L SN0 P

C?)

P((I‘S', 1\"7, (:)) —

2

—

~ . _1/ 1 L~ . .
(det 2mS(S, N, (j))) exp (— 5 d'S~(S, N, o) (1)

S(S,N,6) = N + aL(¢)TST 1L (6)

* N’ operations to evaluate normalization

* |mpossible to evaluate. No Metropolis-Hastings, no
Hamiltonian Sampling, no importance sampling etc.

* Fail.



Exchange sampling
(Murray 2007)

... solves the problem of not being able to evaluate the
normalization for a posterior pdf of the form
PNACIL)
p(0) |
Z(0)
Augment this problem with another parameter set 9’ and
another (fake) data set d’. New joint posterior is

_ _ _ 0 , _ z: o/
p.0.2.0) = p(O) Lo Lo

Marginalization gives the old posterior .
Sample by alternating two transitions: Note cancellation of

— Sample (&,d’|9,d) — this is a Gibbs sample. Z(ﬁ) |
— Propose exchange move ¥’ <—> 0. Accept with acceptance
ratio

p(0') q(0—0"sy) f(y;0') f(a;0)
p(0)q(0'—06;y) f(y:0) f(x:6)




Details

* L(d) implemented using FLINTS (Lavaux
&Wandelt 2010) for fast lensing and
transpose lensing

* |nitialize using quadratic estimator

7 1 N - 2 1 ,2,\,
@ (om — UPLm + Ve (() Dl.m + (Zé,m) y + 7 ¢!
— Drift-diffusion proposal based on re-weighted quadratic estimator
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nside=512, Imax=256
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X-Correlation between input and
reconstructed lensing potential
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Lensed CMB input signal

11 décembre 2011 Wandelt & Lavaux



Input lensing potential
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Difference between input and

posterior mean lensing potential
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Posterior std dev. of lensing

potential
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Difference between 1 reconstructed
unlensed CMB and the true CMB

11 décembre 2011 Wandelt & Lavaux
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Conclusions

* First implementation of fully Bayesian lensing
analysis applied to idealized simulation

* Doubly hard sampling problem

* |Interesting application of the exchange
algorithm



PRECISION COSMOGRAPHY WITH
STACKED COSMIC VOIDS

Lavaux & Wandelt, arxiv:1110.0345)



Cosmography




Dark energy phenomenology

 Through GR, dark energy has a direct impact on
the expansion history of the Universe:

— Supernovae measure the way standard candles dim
with expansion (luminosity distance, indirect)

— The imprint primordial gas leaves on the dark matter
gives a standard ruler whose length we can measure
in the distant Universe (large scale, few modes).

— If we had cosmic clocks we could directly find the
relationship between expansion and cosmic time

(Jimenez and Loeb 2002) (but need to understand
galaxy spectra)



Cosmic stopwatches

* Good clocks (with long term stability) are hard to
find

e Butif we had standard spheres we could directly
work out the cosmic expansion history by
dividing their angular extent by their temporal
extent

* This is a differential measurement

e Standard spheres are like cosmic stopwatches
* This is the Alcock-Paczynsky technique

* First realized for voids by Ryden in 1995

(Lavaux & Wandelt, arxiv:1110.0345)



Cosmography with voids

space

Cosmic
Time,
Expansion

Here, now
(Lavaux & Wandelt, arxiv:1110.0345 )




Cosmography with voids

space

Cosmic
Time,
Expansion

Here, now
(Lavaux & Wandelt, arxiv:1110.0345 )




Void definition

* Need a good definition of voids — spatial
statistics
— Modified ZOBOV scheme (Neyrinck 2008)

e Uses Voronoi tesselation to find catchment basins
associated with density minima

* Does not assume a hard-coded void shape

* Organizes voids in a tree-structure

(Lavaux & Wandelt, arxiv:1110.0345 )



Void tree
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Practical issues

* Voids are not spheres —they have complicated
shapes

— Solution: void stacking

* Take particles in all detected void regions in a redshift shell,
co-center and merge them

* Voids are spherical on average (in physical coordinates).

* Tracers (galaxies) move — this distorts the voids
systematically in redshift space

— Solution: model coherent motions in void.

* In fact, the effect largely produces a constant bias that can
be corrected.

(Lavaux & Wandelt, arxiv:1110.0345 )



(Lavaux & Wandelt, arxiv:1110.0345 )
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Statistical model for shape inference

* Void walls have structure
— Some residual clumping remains after stacking

— Solution: choose pixel size large enough (~2 h
Mpc) that clumps only contribute to one pixel.

— This allows treating clumping noise as
independent in pixel space.

— Bayesian MCMC procedure for fitting an
ellipsoidal cubic density profile, including a
clumping noise parameter.

(Lavaux & Wandelt, arxiv:1110.0345 )
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Hubble parameter H(z) recovered

from N-body simulation
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Simple de-biasing gives good H(z)
estimate even with peculiar velocities

+ =+ Simulation R=8 k™ * Mpc
— Theory

Redshift =

(Lavaux & Wandelt, arxiv:1110.0345 )
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Next steps

Each step (void identification, stacking/averaging, shape inference)
involves choices and parameters. We have only scratched the surface.

More detailed peculiar velocity modeling will yield additional signal to
noise

Need more realistic simulations including more real-world systematics:
— Biased tracers of the density
— Complicated masks
— But since this is a purely geometrical measurement this signal is very robust

Further, complementary constraints could come from additional
inferences about the growth of cosmic structure from the intrinsic shapes
of voids — which this method ignores. (e.g., Park & Lee 2007; Biswas et al.
2010; Lavaux & Wandelt (2010))



Conclusions

Non-linear, principled cosmological inference with ~10’
parameters is becoming feasible

Global analysis of survey data can add tremendous value to
photo-z surveys

New sampling techniques allow progress for doubly hard
inference problems, like lensing

“Stacked Voids” are a new, purely geometrical dark energy
observable. First estimates suggest tremendous additional
potential for constraints on Dark Energy

Opens up many interesting statistics questions
— Spatial statistics
— Robustness
— Optimal survey design for the AP test with stacked voids
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Survey forecasts

Survey Fraction Luminosity Limiting  zmax Number
of sky function magnitude of galaxies
¢+ = 1.4610~2 h*Mpc—2
SDSS-DR7 24% M, = —20.83 r=18 03  1.710°
a=—1.20

(SDSS Collaboration & Blanton 2000)

¢+ = 2.63107° h3Mpe—2
M, = —19.42

SDSS-DR7 (LRG) 24% 200 r =20 0.45 105
(Cool et ai. 2008)
BOSS 24% same as the SDSS r =20 0.7 1.5 10°
¢+ = 1.1610~2 h*Mpc—3
EUCLID 36% M. = —12?(’)39 H =24 1.5 ~1.6108
(Kochanek et al. 2001;..]0nes et al. 2006)
Method Data FoM
BAO BOSS 86
Voids SDSS+BOSS LRG 63
BAO+Voids SDSS+BOSS 91 (Lavaux & Wandelt,
Voids EUCLID ~5 500 arxiv:1110.0345 )
BAO EUCLID 185
BAO+Voids EUCLID ~5 500




