A sparsity-based method to restore MUSE hyperspectral data

Dedicated Algorithms for HyperspectraL Imaging in Astronomy

url : dahlia.oca.eu

E.Slezak – S.Bourguignon – D.Mary (UNS / CNRS / Observatoire de la Côte d'Azur)

- References -Bourguignon,S.,Mary,D.,Slezak,E.: 2011, Statistical Methodology 9(1) Bourguignon,S.,Mary,D.,Slezak.E,: 2011, IEEE Selected topics on Signal Proc. 5(5),1002-1013

The era of integral-field spectroscopy

Astronomical hyperspectral data : specificities

- Low signal to noise ratio (S/N < 1 dB):
 - \rightarrow the high noise level and its detailed statistics have to be taken into account
 - \rightarrow fusion/combination of exposures (deep field, large field : mosaicing)
- **Ground-based observations** mostly (cf. MUSE @ VLT2) :

- perturbations from : atmosphere, AO, telescope, instrument, ...
 - \rightarrow PSF determination (spatial and wavelength dependencies) + deconvolution
- objects are superimposed onto a (varying) background
 - \rightarrow background estimation and subtraction

• Astrophysical sources are diverse :

- spatial and spectral shapes may be very different \rightarrow segmentation / detection
- overlaps and crowding \rightarrow source separation
- Massive and complex data :
- \rightarrow data visualization and simulation 300x300 x 4000 elements

2011, March 8th

AstroStatistics Workshop

FoV of MUSE

 12×4 blocs

Interest of hyperspectral data in astrophysics

· various physical processes with different spectral behaviours

· discovery of distant (emission-line) objects whatever their redshifts are

AstroStatistics Workshop

MUSE hyperspectral data Segmentation astronomical objects vs. astrophysical sources vs. *homogeneous zones*

• reminder :

- PSF variations + expected DRS residuals
- very low S/N ; a spectrally varying noise
- lack of spectral continuum may occur \rightarrow LAEs
- dimension heterogeneity : images / spectra

deep field v1 without noise

• Two strategies :

noise-free image (part)

noise-free spectrum

2011, March 8th

- a 2+1 D cube : a set of shapes with a spectral information (Marked Point Process)
- a 1+2 D cube : a set of spectra (cf. MUSE instrumental characteristics) to be aggregated

1) use and restore the spectral information

(noise reduction, deconvolution, characterization)

2) segmentation

chosen approach

- huge data set \rightarrow dimension reduction is welcomed
- very low S/N \rightarrow a robust method is mandatory

an inverse problem with parcimony constraints

noisy image (part)

А

MUSE instrument and noise specificities

• MUSE response → spatial and spectral spreading variable with the wavelength PSF : *Field Spread Function* (FSF) + *Line Spread Function* (LSF)

• a spectrally variable noise : (strong) atmospheric emission lines, q. efficiency, laser star (AO)

Restoration of MUSE-like data

Inverse problem : observations $\mathbf{Y} = \mathbf{H} \ \mathbf{X} + \mathbf{N} \rightarrow \text{estimate } \mathbf{X}$? Direct inversion : $\mathbf{H}^{-1} \ \mathbf{X} + \mathbf{H}^{-1} \ \mathbf{N} \rightarrow \text{noise amplification}$ > constrain restoration with additional prior assumptions <

Prior information : sparsity in the spectral domain where the information is located > galaxy spectrum : a set of elementary features (continuum, lines, discontinuities, etc.) <

 \rightarrow dictionary W of possible spectral features \rightarrow x = W u with u sparse

Estimation setting

Considering $\mathbf{Y} = \mathbf{H} \mathbf{X} + \mathbf{N}$ the estimate of \mathbf{X} is given by $\min_{\mathbf{X}} \|\mathbf{Y} - \mathbf{H} \mathbf{X}\|^2$

so that, for each pixel k (1,...,K), $x_k = W x_k$ with sparse x_k

s.t. $\mathbf{X} = \mathbf{W}^{(K)} \mathbf{U}$ with $\mathbf{W}^{(K)}$ made of K blocks \mathbf{W} $\widehat{\mathbf{U}} = \operatorname*{arg\,min}_{\mathbf{U}} \|\mathbf{Y} - \mathbf{H}\mathbf{W}^{(K)}\mathbf{U}\|^{2} + \alpha \|\mathbf{U}\|_{1}, \alpha > 0$

→ estimation of active coefficients in each spectrum : $\widehat{\mathbf{U}}_{\star} = {\{\widehat{\mathbf{U}}_{j} \neq 0\}}$ i.e. detection of significant spectral features $\|.\|_{1} \rightarrow \text{ amplitudes are biaised } \rightarrow \widehat{\mathbf{U}}_{\star}' = \arg\min_{\mathbf{U}_{\star}} \|\mathbf{Y} - \mathbf{HW}_{\star}^{(\kappa)}\mathbf{U}_{\star}\|^{2}$ \rightarrow spectra restoration : $\widehat{\mathbf{X}} = \mathbf{W}_{\star}^{(\kappa)}\widehat{\mathbf{U}}_{\star}'$

- spatial and spectral deconvolution with *only spectral prior* information
- 15 x 15 pixels, 4 000 wavelengths $\rightarrow 9 \ 10^5$ data points, 7 10^6 unknowns

2011, March 8th

A two-step (sub-optimal) procedure

$$\widehat{\mathbf{U}} = \underset{\mathbf{U}}{\operatorname{arg\,min}} \left\| \mathbf{Y} - \mathbf{H} \mathbf{W}^{(K)} \mathbf{U} \right\|^{2} + \alpha \left\| \mathbf{U} \right\|_{1}, \alpha > 0 \qquad (\text{eq.1})$$

i) Decompose all spectra \mathbf{y}_k in \mathbf{Y} independently :

 \rightarrow sparse approximation of a spatially spread spectral information

 $\widehat{\mathbf{u}}_{k} = \arg\min_{\mathbf{u}} \|\mathbf{y}_{k} - \mathbf{L}_{k} \mathbf{W} \mathbf{u}_{k}\|^{2} + \beta \|\mathbf{u}_{k}\|_{1}, \quad \beta > 0 \qquad (\mathbf{L}_{k} : \mathbf{LSF} \text{ at pixel } k)$

→ detection of significant atoms in y_k : $W_{\Omega k}$, $\Omega_k = \{j \mid u_{kj} \neq 0\}$ in pratice : low β values → detection of faint features, but more false alarms

ii) Consider eq.1 with W being restricted to the atoms selected at step i)

• $\mathbf{x}_k = \mathbf{W}_{\mathbf{\Omega}k} \mathbf{u}_{\mathbf{\Omega}k}$

• $\mathbf{x}_k = \mathbf{W}_{\Omega'k} \mathbf{u}_{\Omega'k}$ with $\Omega'_k = \bigcup_{j \in V(k)} \Omega_j$ and V(k) a local neighbourhood < FSF \rightarrow optimization in a parameter space Ω of lower dimensionality

$$\widehat{\mathbf{U}} = \arg\min \|\mathbf{Y} - \mathbf{H}\mathbf{W}_{\Omega}\mathbf{U}_{\Omega}\|^{2} + \gamma \|\mathbf{U}_{\Omega}\|_{1}, \ \gamma > 0$$

in practice : the 2nd sparsity constraint allows one to remove false alarms from i) 2011, March 8th AstroStatistics Workshop 9/15

Implementations details

i) Dictionary normalization :

Let us consider a Gaussian noise with covariance matrix Σ . The data misfit term is :

$$\|\mathbf{Y} - \mathbf{HWU}\|_{\boldsymbol{\Sigma}}^{2} = (\mathbf{Y} - \mathbf{HWU})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{Y} - \mathbf{HWU}) = \left\|\boldsymbol{\Sigma}^{-1/2} \mathbf{Y} - \boldsymbol{\Sigma}^{-1/2} \mathbf{HWU}\right\|^{2}$$

- the equivalent dictionary $\sum -1/2 \mathbf{H} \mathbf{W}$ is *not normalized*
- column normalization is necessary for coherent detection statistics

ii) Optimization specificities :

- W structure : no fast transform is available
- involv. sizes: matrix storage is impossible
- → Iterative Coordinate Descent algorithm with specific accelerations

Experimental results : a single spectrum

initial spectrum

convolved and noisy spectrum

restored : $\beta = 4.2$

restored : $\beta = 3.5$

restored : $\beta = 2.5$

Experimental results : two point sources

Computational aspects

- Image 9 × 9; FSF 5 × 5 \rightarrow restored image : 13×13 pixels 3 463 wavelengths \rightarrow 280 000 data
- whole dictionary : ~ 410^6 unknowns, computation time = ???
- restoration of x_k using only atoms selected on pixel k
 - $\sim 10^3$ unknowns, 82 active coefficients, execution time = 6 mn
- restoration of x_k using selected atoms within a 5 × 5 neighbourhood

 $\sim 10^4$ unknowns, 89 active coefficients, execution time = 45 mm

blurred and noisy data averaged images

restored data

Experimental results : spectral unmixing

AstroStatistics Workshop

Summary and Perspectives

- a restoration scheme which accounts for spectrally varying PSF and noise
- spatial and spectral deconvolution with spectral prior information
- sparsity : physically motivated (vs. generic) set of atoms \rightarrow robustness
- efficiency in separating point sources and in "simple" unmixing cases

> topics in progress <</pre>

- \rightarrow dictionaries
- \rightarrow automatic tuning of hyperparameters
- \rightarrow more complex priors for specific problems (cf. extended sources)
- \rightarrow source detection and characterization :
 - group pixels with the *same* spectral *signature*
 - (distance measure : KL ; statistical decision)
 - a first attempt with a basic criterion ... \rightarrow
 - no constraint on morphologies
 - vs. input for a MPP approach ?
- \rightarrow very faint but extended structures

