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Astronomical hyperspectral data : specificities

• Low signal to noise ratio  (S/N < 1 dB) :
      → the high noise level and its detailed statistics have to be taken into account 
      → fusion/combination of exposures (deep field, large field : mosaicing)

• Ground-based observations mostly (cf. MUSE @ VLT2) :

   – perturbations from : atmosphere, AO, telescope, instrument, ...
       → PSF determination (spatial and wavelength dependencies)   +  deconvolution
   – objects are superimposed onto a (varying) background
       → background estimation and subtraction

• Astrophysical sources are diverse :
   – spatial and spectral shapes may be very different   →   segmentation / detection
   – overlaps and crowding  → source separation

• Massive and complex data :
→  data visualization and simulation

48 slices of 75 pix.
spacing of  6 pixels

24 IFU
12 x 4 blocsFoV of MUSE

300x300 x 4000  elements
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Interest of hyperspectral data in astrophysics 
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MUSE hyperspectral data Segmentation
astronomical objects vs. astrophysical sources vs. homogeneous zones

chosen approach
huge data set     →    dimension reduction is welcomed
very low S/N     →    a robust method is mandatory

an inverse problem with parcimony constraints

• reminder :

   – PSF variations + expected DRS residuals
   – very low S/N ; a spectrally varying noise
   – lack of spectral continuum may occur   →   LAEs

   – dimension heterogeneity : images / spectra

 deep field v1 without noise

• Two strategies :

  – a 2+1 D cube : a set of shapes with a spectral information   (Marked Point Process)
  – a 1+2 D cube : a set of spectra (cf. MUSE instrumental characteristics) to be aggregated
                          1) use and restore the spectral information
                            (noise reduction, deconvolution, characterization)
                       2) segmentation 
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MUSE instrument and noise specificities

• MUSE response  →   spatial and spectral spreading variable with the wavelength
            PSF :  Field Spread Function (FSF) + Line Spread Function (LSF)

• a spectrally variable noise : (strong) atmospheric emission lines, q. efficiency, laser star (AO)



7/15 AstroStatistics Workshop 2011, March 8th

Restoration of MUSE-like data

Inverse problem :     observations   Y  =  H  X  +  N     →    estimate X ? 

Direct inversion :    H-1 X + H-1 N   →  noise amplification
 > constrain restoration with additional prior assumptions < 

Prior information :  sparsity in the spectral domain where the information is located
> galaxy spectrum : a set of elementary features (continuum, lines, discontinuities, etc.) <

→ dictionary W of possible spectral features           →      x = W u   with  u  sparse 
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Estimation setting

Considering   Y  =  H X  +  N    the estimate of  X  is given by   minX ║Y − H X║2 

so that, for each pixel k (1,...,K),    xk  =  W xk   with sparse  xk

                     s.t.                            X   =  W(K) U  with W(K) made of K blocks W

→ estimation of active coefficients in each spectrum : 
        i.e.  detection of significant spectral features  

→ spectra restoration : 

║.║1 →  amplitudes are biaised  →  

• spatial and spectral deconvolution with only spectral prior information

• 15 x 15 pixels, 4 000 wavelengths  →  9 105 data points, 7 106 unknowns
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A two-step (sub-optimal) procedure

 i) Decompose all spectra  yk  in  Y  independently :

    → sparse approximation of a spatially spread spectral information

    → detection of significant atoms in  yk  :   WΩk ,  Ωk = { j | ukj ≠ 0 }

         in pratice :  low β values  →  detection of faint features, but more false alarms

ii) Consider eq.1 with W being restricted to the atoms selected at step i)
     • xk = WΩk uΩk
     • xk = WΩ'k uΩ'k  with Ω'k =               Ωj  and V(k) a local neighbourhood < FSF

     →  optimization in a parameter space Ω of lower dimensionality

         in practice : the 2nd sparsity constraint allows one to remove false alarms from i) 

(eq.1)

(Lk : LSF at pixel k)
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Implementations details

i) Dictionary normalization :

Let us consider a Gaussian noise with covariance matrix Σ. The data misfit term is :

• the equivalent dictionary   Σ -1/2 H W  is not normalized
• column normalization is necessary for coherent detection statistics

ii) Optimization specificities :

• W structure : no fast transform is available 
• involv. sizes: matrix storage is impossible
→ Iterative Coordinate Descent algorithm with specific accelerations
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Experimental results : a single spectrum

initial spectrum convolved and noisy spectrum

restored : β = 2.5restored : β = 4.2 restored : β = 3.5
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Experimental results : two point sources
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Computational aspects

Image 9 × 9 ; FSF 5 × 5  →  restored image : 13×13 pixels
     3 463 wavelengths      →  280 000 data

• whole dictionary : ~ 4106 unknowns, computation time = ???
• restoration of xk using only atoms selected on pixel k

   ~103 unknowns, 82 active coefficients, execution time = 6 mn

• restoration of xk using selected atoms within a 5 × 5 neighbourhood

   ~104 unknowns, 89 active coefficients, execution time = 45 mn

initial data blurred and noisy data restored data
averaged images
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Experimental results : spectral unmixing
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Summary and Perspectives

• a restoration scheme which accounts for spectrally varying PSF and noise
• spatial and spectral deconvolution with spectral prior information
• sparsity : physically motivated (vs. generic) set of atoms   →  robustness
• efficiency in separating point sources and in “simple” unmixing cases

> topics in progress <
→ dictionaries
→ automatic tuning of hyperparameters
→ more complex priors for specific problems (cf. extended sources)

→ source detection and characterization :
     – group pixels with the same spectral signature
           (distance measure : KL ; statistical decision)
           a first attempt with a basic criterion ...    →
     – no constraint on morphologies
     – vs. input for a MPP approach ? 
→ very faint but extended structures 
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