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Astronomical hyperspectral data : specificities

» Low signal to noise ratio (S/N<1dB):

— the high noise level and its detailed statistics have to be taken into account
— fusion/combination of exposures (deep field, large field : mosaicing)

* Ground-based observations mostly (cf. MUSE @ VLT2) :

=y

— perturbations from : atmosphere, AO, telescope, instrument, ...

— PSF determination (spatial and wavelength dependencies) + deconvolution
— objects are superimposed onto a (varying) background

— background estimation and subtraction

 Astrophysical sources are diverse :

— spatial and spectral shapes may be very different — segmentation / detection

— overlaps and crowding — source separation 4 slices of 75 i,

spacing of 6 pixels

* Massive and complex data : — |
. o . . FoV-of MUSE 12 x 4 blocg | [
— data visualization and simulation g B IFU< L —
300x300 x 4000 elements |

| [
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Interest of hyperspectral data in astrophysics

« various physical processes with different spectral behaviours
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MUSE hyperspectral data Segmentation

astronomical objects vs. astrophysical sources vs. homogeneous zones

deep field vl without noise
[ .

e reminder :

— PSF variations + expected DRS residuals
—very low S/N ; a spectrally varying noise
— lack of spectral continuum may occur — LAEs

— dimension heterogeneity : images / spectra

* Two strategies :

—a 2+1 D cube : a set of shapes with a spectral information (Marked Point Process)
—a 1+2 D cube : a set of spectra (cf. MUSE instrumental characteristics) to be aggregated
1) use and restore the spectral information

(noise reduction, deconvolution, characterization) R L
2) segmentation *

chosen approach
huge data set — dimension reduction is welcomed

MM very low S/N — arobust method is mandatory

500

noise-free image (part)

700
2 (nm)

P I an inverse problem with parcimony constraints

noisy spectrum
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MUSE 1nstrument and noise specificities

* MUSE response — spatial and spectral spreading variable with the wavelength
PSF : Field Spread Function (FSF) + Line Spread Function (1.SF)

[—LSFa = 250 nm{ [—LSF &= &15 nmjy

FSF@ A =450 nm FSF®@ X\ = 915 nm

* a spectrally variable noise : (strong) atmospheric emission lines, q. efficiency, laser star (AO)

EED 500 550 500 650 700 750 a00 850 QD0
A (nm)
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Restoration of MUSE-like data

Inverse problem : observations Y = H X + N — estimate X ?

Direct inversion: H-l X+HI N — noise amplification
> constrain restoration with additional prior assumptions <

Prior information : where the information is located
> galaxy spectrum : a set of elementary features (continuum, lines, discontinuities, etc.) <

— dictionary W of possible spectral features —  x=Wu with u sparse
W = [Wlinesg Wsteps; chs] [
N ~ 3500 données x M ~ 26000 atomes 18
lines
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Estimation setting

Considering 'Y = HX + N the estimate of X is given by miny ||Y— HX"2

so that, for each pixel £ (1,...K), xx = W xj with sparse xj

S.t. X = W& U with W& made of K blocks W

e 2
U — arg min HY : HW”‘”UH +a|U|l,,a>0
U

— estimation of active coefficients in each spectrum :

U. = {U; #0)
1.e. detection of significant spectral features

. . = 2
|.|[1 — amplitudes are biaised — U] = arg miny,_ Y — HW{ U,

—> spectra restoration : X = WU,

» spatial and spectral deconvolution with only spectral prior information
* 15 x 15 pixels, 4 000 wavelengths — 9 10° data points, 7 106 unknowns
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A two-step (sub-optimal) procedure

U= argdllill ”Y — HW{K}UHE + a ||U]]; ,a > 0 (eq.1)

1) Decompose all spectra y; in 'Y independently :
— sparse approximation of a spatially spread spectral information
tix = argmin, ||y, — LiWuk|* + 8|luk]l,, B>0 (Lj : LSF at pixel k)
— detection of significant atoms in yi @ Wq,, Q= 1{/| U #0}

in pratice : low f values — detection of faint features, but more false alarms

i1) Consider eq.1 with W being restricted to the atoms selected at step 1)
" X = Wop ugy
* X =Wougy with Q= Uiey € and V(k) a local neighbourhood < FSF

— optimization in a parameter space (2 of lower dimensionality

0 = argmin||Y — HWoUg| 47 [[Ual|,, 7 > 0

in practice : the 2" sparsity constraint allows one to remove false alarms from i)
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Implementations details

1) Dictionary normalization :
Let us consider a Gaussian noise with covariance matrix . The data misfit term is :
2

1Y — HWU||2 = (Y—HWU) =" }(Y_HWU) = H}:—lfgv - z—lﬂku”

e the equivalent dictionary X -2 HW is not normalized
 column normalization is necessary for coherent detection statistics

i1) Optimization specificities :

« W structure : no fast transform is available
* involv. sizes: matrix storage 1s impossible
—> algorithm with specific accelerations
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Experimental results : a single spectrum
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Experimental results : two point sources
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Computational aspects

Image 9 X 9 ; FSF 5 X 5 — restored image : 13X13 pixels
3 463 wavelengths — 280 000 data

» whole dictionary : ~ 4100 unknowns, computation
» restoration of X} using only atoms selected on pixel &

~103 unknowns, 82 active coefficients, execution
» restoration of X/ using selected atoms within a 5 X 5 neighbourhood

~10% unknowns, 89 active coefficients, execution

initial data blurred and noisy data restored data
averaged images
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Experimental results : spectral unmixing
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Summary and Perspectives

* a restoration scheme which accounts for spectrally varying PSF and noise
* spatial and spectral deconvolution with spectral prior information

e sparsity : physically motivated (vs. generic) set of atoms — robustness
» efficiency in separating point sources and in “simple” unmixing cases

> topics in progress <
— dictionaries
— automatic tuning of hyperparameters
— more complex priors for specific problems (cf. extended sources)

— source detection and characterization :
— group pixels with the same spectral signature
(distance measure : KL ; statistical decision)
a first attempt with a basic criterion... —
—no constraint on morphologies
— vs. mput for a MPP approach ?
— very faint but extended structures
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