Extreme value statistics in astronomy

David Valls-Gabaud

CNRS, Observatoire de Paris

Atelier Astrostatistiques Grenoble 2011 Dec 09

Extreme values of a sample

Basics of extreme value theory I

Let $X_1 \dots X_n$ be independent random variables having a common distribution function F.

Let M_n be the maximum of n observations :

$$M_n = \max\left\{X_1, \ldots, X_n\right\}$$

The theoretical distribution of M_n

$$\Pr \{ M_n \le z \} = \Pr \{ X_1 \le z, \dots, X_n \le z \}$$
$$= \Pr \{ X_1 \le z \} \times \dots \times P \{ X_n \le z \}$$
$$= \{ F(z) \}^n.$$

not very useful since usually F is unknown...

Basics of extreme value theory II

Make a simple linear renormalisation of M_n

$$M_n^* = \frac{M_n - b_n}{a_n},$$

for constants $\{a_n > 0\}$ and $\{b_n\}$ chosen appropriately to stabilise the location and scale of M_n^* as *n* increases.

Basics of extreme value theory III

Theorem (Fréchet 1927): If there exist sequences of constants $\{a_n > 0\}$ and $\{b_n\}$ such that

$$\Pr\left\{\frac{M_n - b_n}{a_n} \le z\right\} \to G(z) \qquad \text{as } n \to \infty,$$

where G is a non-degenerate distribution function, then G belongs to one of the following families:

I:
$$G(z) = \exp\left\{-\exp\left[-\left(\frac{z-b}{a}\right)\right]\right\}, \quad -\infty < z < \infty;$$

II: $G(z) = \left\{\begin{array}{ll} 0, & z \le b, \\ \exp\left\{-\left(\frac{z-b}{a}\right)^{-\alpha}\right\}, & z > b; \end{array}\right.$
III: $G(z) = \left\{\begin{array}{ll} \exp\left\{-\left[-\left(\frac{z-b}{a}\right)^{\alpha}\right]\right\}, & z < b, \\ 1, & z \ge b, \end{array}\right.$

independently of the underlying F ... (REM: central limit theorem for sample means)

The Gumbel distribution

 $G(x) = \exp(-\exp(-x))$

The Fréchet distribution

٠

$$G(x) = \begin{cases} 0 & x \le 0\\ \exp(-x^{-\alpha}) & x > 0, \alpha > 0 \end{cases}$$

Emil Julius Gumbel 1891-1966

Maurice René Fréchet 1878-1973

Ernst Hjalmar Waloddi Weibull 1887-1979

standardised variate

Corollary: If there exist sequences of constants $\{a_n > 0\}$ and $\{b_n\}$ such that

$$\Pr\left\{\frac{M_n - b_n}{a_n} \le z\right\} \to G(z) \qquad \text{as } n \to \infty,$$

for a non-degenerate distribution function G, then G is a member of the GEV family

$$G(z) = \exp\left\{-\left[1 + \xi\left(\frac{z-\mu}{\sigma}\right)\right]^{-1/\xi}\right\},\tag{2.2}$$

defined on $\{z : 1 + \xi (z - \mu) / \sigma > 0\}$, where $-\infty < \mu < \infty$, $\sigma > 0$ and $-\infty < \xi < \infty$.

$$z_{p} = \begin{cases} \mu - \frac{\sigma}{\xi} \left[1 - \{ -\log(1-p) \}^{-} \xi \right], & \text{for } \xi \neq 0, \\ \mu - \sigma \log \{ -\log(1-p) \}, & \text{for } \xi = 0, \end{cases}$$

where $G(z_p) = 1 - p$.

Definition The extreme quantile $z_p = G^{-1}(1-p)$, where G is the distribution function of M_n , is called the *return level* associated with the *return period* 1/p.

 μ : location σ : scale ξ : slope

T-axis is transformed such that Gumbel-Distribution is a straight line.

 $F(x) = GEV(x; \mu, \sigma, \xi)$ estimated CDF $Y(x) = -\log(-\log(F(x)))$ Gumbel Variate Horizontal axis is linear in *Y*. T(x) = 1/(1 - F(x)) Return period

 x_k k = 1,..,N Block Maxima $\tilde{T}_k = \frac{N+1}{N+1-rank(x_k)}$ plotting points of block maxima x_k

Parametric resampling and confidence intervals

Extreme tides: temporal series

Pirazzoli & Tomasin (2007) Ocean Dynamics 57, 91

Expected return periods

Pirazzoli & Tomasin (2007) Ocean Dynamics 57,91

Basics of extreme value theory IV

Estimation of GEV parameters:

★ Method of moments: not robust and VERY unstable
 ★ Block maxima: extreme events in FIXED intervals
 ★ Peak over thresholds: all extreme events ABOVE a fixed value

Basics of extreme value theory V

Conditional excess distribution function for a threshold level u: $F_u(y) = P(y \ge X - u | X > u), \quad 0 \ge y < \infty$

$$F_u(y) = \frac{F(u+y) - F(u)}{1 - F(u)}, \qquad y > 0$$

Theorem (Pickands 1975):

$$\begin{split} F_u(y) &\approx \begin{array}{ll} 1 - \left(1 + \frac{\xi}{\sigma}y\right)^{-1/\xi} & \text{ if } \xi \neq 0 \\ 1 - \mathrm{e}^{-y/\sigma} & \text{ if } \xi = 0, \end{split}$$

so that the cumulative DF for events above u, taking x=u+y, is :

$$F(x) = 1 - \frac{N_u}{n} \left[1 + \frac{\xi}{\sigma} (x - u) \right]^{-1/\xi}$$

For a given sample, calculate the likelihood and apply standard Bayesian estimation :

Asensio Ramos (2007) A&A 472, 293

Star Formation and the Origins of the Stellar Initial Mass Function

Why are there fewer massive stars than low-mass stars?

• Typical stellar mass \sim Jeans Mass.

$$M_{\rm Jeans} \equiv \left[\frac{5}{2}\frac{R_g T}{G\mu}\right]^{\frac{3}{2}} \left[\frac{4\pi}{3}\rho\right]^{-\frac{1}{2}}$$

- In Molecular clouds:
 - Temperatures \sim 10 K,
 - Lots of structure,
 - Dense cores: $ho \sim 10^{-19} {\rm g/cm^3}$.
- \implies masses M \sim 0.7 M_{Sol}.
 - Agrees well with observations:
 - $M_{\rm median} \sim 0.5 \ M_{\rm Sol}$.
- Not all stars have the same mass => Distribution?
- The IMF!

- Salpeter-IMF (power-law): ξ(m) = k m^{-2.35}, originally only for 0.4 to 10 M_{Sol}.
- Miller-Scalo IMF (log-normal):

$$\xi(Im) = k \ e^{-\frac{(Im+1.02)^2}{0.9248}},$$

with $lm = \log_{10} m$.

• Kroupa-IMF (multi power-law):

 $\xi(m) = k \begin{cases} \left(\frac{m}{m_{\rm H}}\right)^{-\alpha_0} & , m_{\rm low} \le m < m_{\rm H}, \\ \left(\frac{m}{m_{\rm H}}\right)^{-\alpha_1} & , m_{\rm H} \le m < m_0, \\ \left(\frac{m_0}{m_{\rm H}}\right)^{-\alpha_1} \left(\frac{m}{m_0}\right)^{-\alpha_2} & , m_0 \le m < m_1, \\ \left(\frac{m_0}{m_{\rm H}}\right)^{-\alpha_1} \left(\frac{m_1}{m_0}\right)^{-\alpha_2} \left(\frac{m}{m_1}\right)^{-\alpha_3} & , m_1 \le m < m_{\rm max}, \end{cases}$ $\alpha_0 = +0.30 & , \quad 0.01 \le m/M_{\odot} < 0.08, \\ \alpha_1 = +1.30 & , \quad 0.08 \le m/M_{\odot} < 0.50, \\ \alpha_2 = +2.35 & , \quad 0.50 \le m/M_{\odot} < 1.00, \\ \alpha_3 = +2.35 & , \quad 1.00 \le m/M_{\odot}. \end{cases}$

Evidence for an upper mass cutoff around 150 M_{\odot} ?

Figer (2005) Nature 434, 592

One expects a correlation between the total cluster mass and the maximum observed stellar mass

Elmegreen (2000) ApJ 539, 432

Weidner, Kroupa & Bonnell (2010) MNRAS 401, 275

sampled_IMF_a03.out

cluster #

Posterior PDFs for scale and slope of IMF for massive stars

Valls-Gabaud & Asensio Ramos (2012)

Distribution function of brightest galaxies in clusters

Bhavsar & Barrow (1985) MNRAS 213,857

Probability of finding the largest structures in a cosmological volume

Probability of finding a Shapley supercluster

Sheth & Diaferio (2011) MNRAS 417, 2938

Probability of finding the SDSS Great Wall

Sheth & Diaferio (2011) MNRAS 417, 2938

Davis et al. (2011) MNRAS 413, 2087

PDF of the most massive clusters of galaxies as a function of redshift and equation of state of Dark Energy

Waizmann, Ettori & Moscardini (2011) MNRAS 418, 456

Most massive galaxy clusters expected in a given survey

Holz & Perlmutter (2010) arXiv:1004.5349

XMMU J2235.3-2557: a massive cluster $M_{324} = (6.4 \pm 1.2) \ 10^{14} M_{\odot}$ at z=1.4

Cayon, Gordon & Silk (2011) MNRAS 415, 849

.... but the shape parameter of the EVS of the halo mass function does not discriminate non-gaussianity

Harrison & Coles (2011) MNRAS 418, L20

Testing General Relativity

Abundance

$$n(M,z) = \int_0^M f(\sigma) \frac{\bar{\rho}_{\rm m}}{M'} \frac{d\ln\sigma^{-1}}{dM'} dM'$$

$$\sigma^2(M,z) = \frac{1}{2\pi^2} \int_0^\infty k^2 P(k,z) |W_{\rm M}(k)|^2 dk \qquad P(k,z) \propto k^{\rm n_s} T^2(k,z_{\rm t}) D(z)^2$$

$$D(z) \equiv \frac{\delta(z)}{\delta(z_{\rm t})} \qquad \frac{d\ln\delta}{d\ln a} = \Omega_{\rm m}(a)^\gamma \qquad \Omega_{\rm m}(a) = \Omega_{\rm m} a^{-3} / E(a)^2$$

$$GR \gamma \sim 0.55$$

$$E(a) = \left[\Omega_{\rm m} a^{-3} + \Omega_{\rm de} a^{-3(1+w)} + \Omega_{\rm k} a^{-2}\right]^{1/2}$$

Rapetti et al. (2011) Prog. Theor. Phys. Suppl. 190, 179

Searching for strong gravitational lenses

	6,	
J095629.77+510006.6	J120540.43+491029.3	J125028.25+052349.0
J162746.44-005357.5	J163028.15+452036.2	J232120.93-093910.2
	J162746.44-005357.5	J095629.77+510006.6 J120540.43+491029.3 J120540.43+491029.3 J120540.43+491029.3 J120540.43+491029.3 J120540.43+491029.3

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team

STScI-PRC05-32

,

Gravitational lens effect by a massive cluster

The size of the Einstein radius can be measured directly from the positions of the background galaxies.

It can also provide us with the depth of the potential well (i.e. dark matter content) as well as the cosmological parameters of a given metric if the redshifts of the background galaxies can also be measured:

$$\theta_E = 4\pi \left(\frac{\sigma_{SIS}}{c}\right)^2 \frac{D_{LS}}{D_{OS}}$$
positions of the images spectrum of the lens spectrum of the source

Inferring Einstein radii for 10,000 SDSS clusters

Zitrin et al. (2011) arXiv:1105.2295

Theoretical expectations

Oguri & Blandford (2009) MNRAS 392, 930

Tension with ΛCDM scenario?

Zitrin et al. (2011) arXiv:1105.2295

Vega & Valls-Gabaud (2012)

N(>0e)

Summary

Methodology

- Proper statistical theory for extreme events
- Bayesian thresholding estimates work best
- Wide applications to astrophysics and cosmology

Limitations

- Assessment of selection biases in samples
- May require extensive testing with simulations